N71-12569 # NASA TECHNICAL MEMORANDUM **NASA TM X-64545** # ELECTROMAGNETIC SCATTERING BY CYLINDERS AN INTRODUCTION By G. A. Gary and P. D. Craven Space Sciences Laboratory September 16, 1970 # NASA George C. Marshall Space Flight Center Marshall Space Flight Center, Alabama | NASA TM X-64545 4. TITLE AND SUBTITLE Electromagnetic Scattering by Cylinders — An Introduction 7. AUTORI(S) G. A. Gary and P. D. Craven 9. PERFORMING ORGANIZATION NAME AND ADDRESS George C. Marshall Space Flight Center Marshall Space Flight Center, Alabama 35812 12. SPONSORING AGENCY NAME AND ADDRESS 13. TYPE OF REPORT & PERIOD COVERED Technical Memorandum 14. SPONSORING AGENCY CODE 15. SUPPLEMENTARY NOTES Prepared by Space Sciences Laboratory, Science and Engineering Directorate 16. ABSTRACT An introduction to the scattering of electromagnetic waves by cylinders is given. The theory of scattering by cylinders are presented by use of the Rayleigh-Gans theory. 16. DISTRIBUTION STATEMENT STAR Announcement G. A. Gary 17. Key words 18. DISTRIBUTION STATEMENT STAR Announcement G. A. Gary 19. SECURITY CLASSIF. (of this report) 20. SECURITY CLASSIF, (of this pager) 21. NO. OF PAGES 22, PRICE | | | | REPORT STANDA | RD TITLE PAGE | |--|--|-----------------------------------|-------------------------|---------------------|-------------------| | Electromagnetic Scattering by Cylinders — An Introduction 7. AUTURE(S) 6. A. Gary and P. D. Craven 9. PERPORMING ORGANIZATION NAME AND ADDRESS George C. Marshall Space Flight Center Marshall Space Flight Center, Alabama 35812 12. SPONSORING AGENCY NAME AND ADDRESS 12. SPONSORING AGENCY NAME AND ADDRESS Prepared by Space Sciences Laboratory, Science and Engineering Directorate 15. ABSTRACT An introduction to the scattering of electromagnetic waves by cylinders is given. The theory of electromagnetism is reviewed, and the theory of light scattering is developed. The general features of scattering by cylinders are presented by use of the Rayleigh-Gans theory. 16. OISTRIBUTION STATEMENT STAR Announcement G. J. Gay 17. KEY WORDS 18. DISTRIBUTION STATEMENT STAR Announcement G. J. Gay 19. SECURITY CLASSIF. (of this sepont) 20. SECURITY CLASSIF, (of this pager) 21. NO. OF PAGES 22, PRICE | | 2. GOVERNMENT ACC | ESSION NO. | 3. RECIPIENT'S CAT | ALOG NO. | | Electromagnetic Scattering by Cylinders — An Introduction 7. Author(s) G. A. Gary and P. D. Craven 9. Performing organization name and address George C. Marshall Space Flight Center Marshall Space Flight Center, Alabama 35812 12. SPONSORING AGENCY NAME AND ADDRESS Prepared by Space Sciences Laboratory, Science and Engineering Directorate 15. Supplementary notes Prepared by Space Sciences Laboratory, Science and Engineering Directorate 16. ABSTRACT An introduction to the scattering of electromagnetic waves by cylinders is given. The theory of electromagnetism is reviewed, and the theory of light scattering is developed. The general features of scattering by cylinders are presented by use of the Rayleigh-Gans theory. 17. KEY WORDS 18. DISTRIBUTION STATEMENT STAR Announcement G. A. Gary 19. SECURITY CLASSIF. (of this separt) 20. SECURITY CLASSIF. (of this page) 21. NO. OF PAGES 22. PRICE | | <u> </u> | | | | | Electromagnetic Scattering by Cylinders — An Introduction 7. Auttories) 7. Auttories) 8. Performing organization code 8. Performing organization report = 8. Performing organization report = 9. Performing organization name and address George C. Marshall Space Flight Center Marshall Space Flight Center, Alabama 35812 12. Sponsoring agency name and address Prepared by Space Sciences Laboratory, Science and Engineering Directorate 15. Abstract An introduction to the scattering of electromagnetic waves by cylinders is given. The theory of electromagnetism is reviewed, and the theory of light scattering is developed. The general features of scattering by cylinders are presented by use of the Rayleigh-Gans theory. 16. Distribution statement 9. Performing organization report = 16. Abstract An introduction to the scattering of electromagnetic waves by cylinders is given. The theory of electromagnetism is reviewed, and the theory of light scattering is developed. The general features of scattering by cylinders are presented by use of the Rayleigh-Gans theory. 16. Distribution statement 9. Performing organization report = 17. Key words 18. Abstract 19. 1 | 4. TITLE AND SUBTITLE | | | | 1070 | | 7. AUTHOR(5) G. A. Gary and P. D. Craven 9. PERFORMING ORGANIZATION NAME AND ADDRESS George C. Marshall Space Flight Center Marshall Space Flight Center, Alabama 35812 12. SPONSORING AGENCY NAME AND ADDRESS 13. YYPE OF REPORY & PERIOD COVERED Technical Memorandum 14. SPONSORING AGENCY CODE 15. SUPPLEMENTARY NOTES Prepared by Space Sciences Laboratory, Science and Engineering Directorate 16. ABSTRACT An introduction to the scattering of electromagnetic waves by cylinders is given. The theory of electromagnetism is reviewed, and the theory of light scattering is developed. The general features of scattering by cylinders are presented by use of the Rayleigh-Gans theory. 17. KEY WORDS 18. DISTRIBUTION STATEMENT STAR Announcement G. J. Gay 19. SECURITY CLASSIF, (of this Peport) 20. SECURITY CLASSIF, (of this Peport) 20. SECURITY CLASSIF, (of this Peport) 21. No. OF PAGES 22. PRICE | The second of Continuous Second Secon | | etion | | | | G. A. Gary and P. D. Craven 9. PERFORMING ORGANIZATION HAME AND ADDRESS George C. Marshall Space Flight Center Marshall Space Flight Center, Alabama 35812 12. SPONSORING AGENCY NAME AND ADDRESS Technical Memorandum 14. SPONSORING AGENCY CODE 15. SUPPLEMENTARY NOTES Prepared by Space Sciences Laboratory, Science and Engineering Directorate 16. ABSTRACT An introduction to the scattering of electromagnetic waves by cylinders is given. The theory of electromagnetism is reviewed, and the theory of light scattering is developed. The general
features of scattering by cylinders are presented by use of the Rayleigh-Gans theory. 17. KEY WORDS 18. DISTRIBUTION STATEMENT STAR Announcement G. J. G. 19. SECURITY CLASSIF, (of this report) 20. SECURITY CLASSIF, (of this page) 21. NO. OF PAGES 22. PRICE | Electromagnetic Scattering by Cylinders — An Introduction | | MOII | o. PERFURMING ORB | ANIZATION CODE | | G. A. Gary and P. D. Craven 9. PERFORMING ORGANIZATION HAME AND ADDRESS George C. Marshall Space Flight Center Marshall Space Flight Center, Alabama 35812 12. SPONSORING AGENCY NAME AND ADDRESS Technical Memorandum 14. SPONSORING AGENCY CODE 15. SUPPLEMENTARY NOTES Prepared by Space Sciences Laboratory, Science and Engineering Directorate 16. ABSTRACT An introduction to the scattering of electromagnetic waves by cylinders is given. The theory of electromagnetism is reviewed, and the theory of light scattering is developed. The general features of scattering by cylinders are presented by use of the Rayleigh-Gans theory. 17. KEY WORDS 18. DISTRIBUTION STATEMENT STAR Announcement G. J. G. 19. SECURITY CLASSIF, (of this report) 20. SECURITY CLASSIF, (of this page) 21. NO. OF PAGES 22. PRICE | 7. AUTHOR(S) | | | B. PERFORMING ORGA | NIZATION REPORT # | | George C. Marshall Space Flight Center Marshall Space Flight Center, Alabama 35812 12. SPONSORING AGENCY NAME AND ADDRESS 12. SPONSORING AGENCY NAME AND ADDRESS 13. TYPE OF REPORT & PERIOD COVERED Technical Memorandum 14. SPONSORING AGENCY CODE 15. SUPPLEMENTARY NOTES Prepared by Space Sciences Laboratory, Science and Engineering Directorate 16. ABSTRACT An introduction to the scattering of electromagnetic waves by cylinders is given. The theory of electromagnetism is reviewed, and the theory of light scattering is developed. The general features of scattering by cylinders are presented by use of the Rayleigh-Gans theory. 17. KEY WORDS 18. DISTRIBUTION STATEMENT STAR Announcement G. J. G. J. No. Of Pages 22. PRICE | | | . l | | | | Marshall Space Flight Center, Alabama 35812 12. SPONSORING AGENCY NAME AND ADDRESS Technical Memorandum 14. SPONSORING AGENCY CODE 15. SUPPLEMENTARY NOTES Prepared by Space Sciences Laboratory, Science and Engineering Directorate 16. ABSTRACT An introduction to the scattering of electromagnetic waves by cylinders is given. The theory of electromagnetism is reviewed, and the theory of light scattering is developed. The general features of scattering by cylinders are presented by use of the Rayleigh-Gans theory. 17. KEY WORDS 18. DISTRIBUTION STATEMENT STAR Announcement G. J. Gan. 19. SECURITY CLASSIF. (of this report) 20. SECURITY CLASSIF. (of this page) 21. NO. OF PAGES 22. PRICE | 9. PERFORMING ORGANIZATION NAME AND AD | DRESS | | O. WORK UNIT, NO. | | | Marshall Space Flight Center, Alabama 35812 12. SPONSORING AGENCY NAME AND ADDRESS Technical Memorandum 14. SPONSORING AGENCY CODE 15. SUPPLEMENTARY NOTES Prepared by Space Sciences Laboratory, Science and Engineering Directorate 16. ABSTRACT An introduction to the scattering of electromagnetic waves by cylinders is given. The theory of electromagnetism is reviewed, and the theory of light scattering is developed. The general features of scattering by cylinders are presented by use of the Rayleigh-Gans theory. 17. KEY WORDS 18. DISTRIBUTION STATEMENT STAR Announcement G. J. Gan. 19. SECURITY CLASSIF. (of this report) 20. SECURITY CLASSIF. (of this page) 21. NO. OF PAGES 22. PRICE | George C. Marshall Space Flight Cen | ter | | | | | 12. SPONSORING AGENCY NAME AND ADDRESS Technical Memorandum 14. SPONSORING AGENCY CODE 15. SUPPLEMENTARY NOTES Prepared by Space Sciences Laboratory, Science and Engineering Directorate 16. ABSTRACT An introduction to the scattering of electromagnetic waves by cylinders is given. The theory of electromagnetism is reviewed, and the theory of light scattering is developed. The general features of scattering by cylinders are presented by use of the Rayleigh-Gans theory. 17. KEY WORDS 18. DISTRIBUTION STATEMENT STAR Announcement G. J. Gan 19. SECURITY CLASSIF. (of this report) 20. SECURITY CLASSIF. (of this page) 21. NO. OF PAGES 22. PRICE | | | . 1 | 1. CONTRACT OR GR | ANT NO. | | Technical Memorandum 14. SPONSORING AGENCY CODE 15. SUPPLEMENTARY NOTES Prepared by Space Sciences Laboratory, Science and Engineering Directorate 16. ABSTRACT An introduction to the scattering of electromagnetic waves by cylinders is given. The theory of electromagnetism is reviewed, and the theory of light scattering is developed. The general features of scattering by cylinders are presented by use of the Rayleigh-Gans theory. 17. KEY WORDS 18. DISTRIBUTION STATEMENT STAR Announcement G. J. Gan 19. SECURITY CLASSIF. (of this Pages) 20. SECURITY CLASSIF, (of this Page) 21. NO. OF PAGES 22. PRICE | maistain Space 1 agree control, 1220 | | L | | | | Technical Memorandum 14. SPONSORING AGENCY CODE 15. SUPPLEMENTARY NOTES Prepared by Space Sciences Laboratory, Science and Engineering Directorate 16. ABSTRACT An introduction to the scattering of electromagnetic waves by cylinders is given. The theory of electromagnetism is reviewed, and the theory of light scattering is developed. The general features of scattering by cylinders are presented by use of the Rayleigh-Gans theory. 17. KEY WORDS 18. DISTRIBUTION STATEMENT STAR Announcement G. J. Gan 19. SECURITY CLASSIF. (of this Pages) 20. SECURITY CLASSIF, (of this Pages) 21. NO. OF PAGES 22. PRICE | | | | 3. TYPE OF REPORT | & PERIOD COVERED | | Prepared by Space Sciences Laboratory, Science and Engineering Directorate 16. ABSTRACT An introduction to the scattering of electromagnetic waves by cylinders is given. The theory of electromagnetism is reviewed, and the theory of light scattering is developed. The general features of scattering by cylinders are presented by use of the Rayleigh-Gans theory. 17. KEY WORDS 18. DISTRIBUTION STATEMENT STAR Announcement G. J. G. J. G. J. G. J. PRICE | 12. SPONSORING AGENCY NAME AND ADDRESS | | | Technical Mem | orandum | | Prepared by Space Sciences Laboratory, Science and Engineering Directorate 16. ABSTRACT An introduction to the scattering of electromagnetic waves by cylinders is given. The theory of electromagnetism is reviewed, and the theory of light scattering is developed. The general features of scattering by cylinders are presented by use of the Rayleigh-Gans theory. 17. KEY WORDS 18. DISTRIBUTION STATEMENT STAR Announcement G. J. G. J. G. J. G. J. PRICE | | | | | | | Prepared by Space Sciences Laboratory, Science and Engineering Directorate 16. ABSTRACT An introduction to the scattering of electromagnetic waves by cylinders is given. The theory of electromagnetism is reviewed, and the theory of light scattering is developed. The general features of scattering by cylinders are presented by use of the Rayleigh-Gans theory. 17. KEY WORDS 18. DISTRIBUTION STATEMENT STAR Announcement G. J. G. J. G. J. G. J. PRICE | | | - | 14 SPONSORING AGE | NCY CODE | | Prepared by Space Sciences Laboratory, Science and Engineering Directorate 16. ABSTRACT An introduction to the scattering of electromagnetic waves by cylinders is given. The theory of electromagnetism is reviewed, and the theory of light scattering is developed. The general features of scattering by cylinders are presented by use of the Rayleigh-Gans theory. 17. KEY WORDS 18. DISTRIBUTION STATEMENT STAR Announcement G. A. Gaw 19. SECURITY CLASSIF. (of this report) 20. SECURITY CLASSIF. (of this page) 21. NO. OF PAGES 22. PRICE | | | | , ., | | | Prepared by Space Sciences Laboratory, Science and Engineering Directorate 16. ABSTRACT An introduction to the scattering of electromagnetic waves by cylinders is given. The theory of electromagnetism is reviewed, and the theory of light scattering is developed. The general features of scattering by cylinders are presented by use of the Rayleigh-Gans theory. 17. KEY WORDS 18. DISTRIBUTION STATEMENT STAR Announcement G. A. Gaw 19. SECURITY CLASSIF. (of this report) 20. SECURITY CLASSIF. (of this page) 21. NO. OF PAGES 22. PRICE | 15. SUPPLEMENTARY NOTES | | <u> </u> | | | | An introduction to the scattering of electromagnetic waves by cylinders is given. The theory of electromagnetism is reviewed, and the theory of light scattering is developed. The general features of scattering by cylinders are presented by use of the Rayleigh-Gans theory. 17. KEY WORDS 18. DISTRIBUTION STATEMENT STAR Announcement G.A. Gaw 19. SECURITY CLASSIF, (of this report) 20. SECURITY CLASSIF, (of this page) 21. NO. OF PAGES 22. PRICE | Prepared by Space Sciences Laborate | ory Science and Er | ngineering Directorate | | | | An introduction to the scattering of electromagnetic waves by cylinders is given. The theory of electromagnetism is reviewed, and the theory of light scattering is developed. The general features of scattering by cylinders are presented by use of the Rayleigh-Gans theory. 17. KEY WORDS 18. DISTRIBUTION STATEMENT STAR Announcement G. J. Gaw 19. SECURITY CLASSIF, (of this report) 20. SECURITY CLASSIF, (of this page) 21. NO. OF FAGES 22. PRICE | Tropated by Space Belefices Laborate | or, sololloc and Di | -D | | | | An introduction to the scattering of electromagnetic waves by cylinders is given. The theory of electromagnetism is reviewed, and the theory of light scattering is developed. The general features of scattering by cylinders are presented by use of the Rayleigh-Gans theory. 17. KEY WORDS 18. DISTRIBUTION STATEMENT STAR Announcement G. J. Gaw 19. SECURITY CLASSIF, (of this report) 20. SECURITY CLASSIF, (of this page) 21. NO. OF FAGES 22. PRICE | | | | | | | electromagnetism is reviewed, and the theory of light scattering is developed. The general features of scattering by cylinders are presented by use of the Rayleigh-Gans theory. 17. KEY WORDS 18. DISTRIBUTION STATEMENT STAR Announcement G. J. Gany 19. SECURITY CLASSIF. (of this report) 20. SECURITY CLASSIF. (of this page) 21. NO. OF PAGES 22. PRICE | 16. ABSTRACT | |
| | | | electromagnetism is reviewed, and the theory of light scattering is developed. The general features of scattering by cylinders are presented by use of the Rayleigh-Gans theory. 17. KEY WORDS 18. DISTRIBUTION STATEMENT STAR Announcement G. J. Gany 19. SECURITY CLASSIF. (of this report) 20. SECURITY CLASSIF. (of this page) 21. NO. OF PAGES 22. PRICE | An introduction to the scatte | ering of electromag | netic waves by cylind | ers is given. The t | heory of | | 17. KEY WORDS 18. DISTRIBUTION STATEMENT STAR Announcement G. A. Gaw 19. SECURITY CLASSIF. (of this report) 20. SECURITY CLASSIF. (of this page) 21. NO. OF PAGES 22. PRICE | electromagnetism is reviewed, and th | ne theory of light so | cattering is developed. | The general feat | ures of | | 17. KEY WORDS 18. DISTRIBUTION STATEMENT STAR Announcement G.A. Gaw 19. SECURITY CLASSIF. (of this page) 21. NO. OF PAGES 22. PRICE | | | | | | | STAR Announcement G.A. Gaw 19. SECURITY CLASSIF. (of this page) 20. SECURITY CLASSIF. (of this page) 21. NO. OF PAGES 22. PRICE | scattering by cymiders are presented | by use of the Ray | leigh Gans theory. | | : | | STAR Announcement G.A. Gaw 19. SECURITY CLASSIF. (of this page) 20. SECURITY CLASSIF. (of this page) 21. NO. OF PAGES 22. PRICE | | | | | | | STAR Announcement G.A. Gaw 19. SECURITY CLASSIF. (of this page) 20. SECURITY CLASSIF. (of this page) 21. NO. OF PAGES 22. PRICE | | | | | | | STAR Announcement G.A. Gaw 19. SECURITY CLASSIF. (of this page) 20. SECURITY CLASSIF. (of this page) 21. NO. OF PAGES 22. PRICE | | | | | | | STAR Announcement G.A. Gaw 19. SECURITY CLASSIF. (of this page) 20. SECURITY CLASSIF. (of this page) 21. NO. OF PAGES 22. PRICE | | | | | | | STAR Announcement G.A. Gaw 19. SECURITY CLASSIF. (of this page) 20. SECURITY CLASSIF. (of this page) 21. NO. OF PAGES 22. PRICE | | | | | | | STAR Announcement G.A. Gaw 19. SECURITY CLASSIF. (of this page) 20. SECURITY CLASSIF. (of this page) 21. NO. OF PAGES 22. PRICE | | | | | | | STAR Announcement G.A. Gaw 19. SECURITY CLASSIF. (of this page) 20. SECURITY CLASSIF. (of this page) 21. NO. OF PAGES 22. PRICE | | | | | | | STAR Announcement G.A. Gaw 19. SECURITY CLASSIF. (of this page) 20. SECURITY CLASSIF. (of this page) 21. NO. OF PAGES 22. PRICE | | | | | | | STAR Announcement G.A. Gaw 19. SECURITY CLASSIF. (of this page) 20. SECURITY CLASSIF. (of this page) 21. NO. OF PAGES 22. PRICE | | | | | | | STAR Announcement G.A. Gaw 19. SECURITY CLASSIF. (of this page) 20. SECURITY CLASSIF. (of this page) 21. NO. OF PAGES 22. PRICE | | | | | | | STAR Announcement G.A. Gaw 19. SECURITY CLASSIF. (of this page) 20. SECURITY CLASSIF. (of this page) 21. NO. OF PAGES 22. PRICE | | | | | | | STAR Announcement G.A. Gaw 19. SECURITY CLASSIF. (of this page) 20. SECURITY CLASSIF. (of this page) 21. NO. OF PAGES 22. PRICE | | | | | | | STAR Announcement G.A. Gaw 19. SECURITY CLASSIF. (of this page) 20. SECURITY CLASSIF. (of this page) 21. NO. OF PAGES 22. PRICE | | | | | | | STAR Announcement G.A. Gaw 19. SECURITY CLASSIF. (of this page) 20. SECURITY CLASSIF. (of this page) 21. NO. OF PAGES 22. PRICE | | | | | | | STAR Announcement G.A. Gaw 19. SECURITY CLASSIF. (of this page) 20. SECURITY CLASSIF. (of this page) 21. NO. OF PAGES 22. PRICE | , | | | | | | STAR Announcement G.A. Gaw 19. SECURITY CLASSIF. (of this page) 20. SECURITY CLASSIF. (of this page) 21. NO. OF PAGES 22. PRICE | | | | | | | STAR Announcement G.A. Gaw 19. SECURITY CLASSIF. (of this page) 20. SECURITY CLASSIF. (of this page) 21. NO. OF PAGES 22. PRICE | | | | | | | STAR Announcement G.A. Gaw 19. SECURITY CLASSIF. (of this page) 20. SECURITY CLASSIF. (of this page) 21. NO. OF PAGES 22. PRICE | | | | | | | STAR Announcement G.A. Gaw 19. SECURITY CLASSIF. (of this page) 20. SECURITY CLASSIF. (of this page) 21. NO. OF PAGES 22. PRICE | 17 KEY WORDS | · · · · · · · · · · · · · · · · · | 10 DISTRIBUTION STAT | FMENT | | | 19. SECURITY CLASSIF. (of this report) 20. SECURITY CLASSIF. (of this page) 21. NO. OF PAGES 22. PRICE | 174 cet andra | | 19, DISTRIBUTION STAT | . No. 071 8617 .5 | | | 19. SECURITY CLASSIF. (of this report) 20. SECURITY CLASSIF. (of this page) 21. NO. OF PAGES 22. PRICE | | | STAR Announ | cement | | | 19. SECURITY CLASSIF. (of this report) 20. SECURITY CLASSIF. (of this page) 21. NO. OF PAGES 22. PRICE | | | | | | | 19. SECURITY CLASSIF. (of this report) 20. SECURITY CLASSIF. (of this page) 21. NO. OF PAGES 22. PRICE | | | G. A. Gan | | | | | | | - IN IN Y | | | | | | | | | | | | | | | | | | Unclassified Unclassified 68 \$3.00 | 19. SECURITY CLASSIF. (of this report) | 20. SECURITY CLAS | SIF, (of this page) | 21. NO. OF PAGES | 22. PRICE | | | Unclassified | Unc | lassified | 68 | \$3.00 | # **TABLE OF CONTENTS** | | Page | |---|-------------------------------------| | SUMMARY | 1 | | INTRODUCTION | 1 | | ELECTROMAGNETIC THEORY | 2 | | Maxwell Equations Wave Equations Plane Waves Propagation Constant Polarization Poynting Vector Electromagnetic Potentials Retarded Potentials Dipole Radiation | 3
6
9
10
12
13
17 | | SCATTERING THEORY | 24 | | Scattering Amplitude Differential Cross Section Scattering by Electric Dipoles (Rayleigh Scattering) Rayleigh-Gans Scattering Circular Cylinders of Finite Length Randomly Oriented Cylinders Lorentz-Lorenz Formula Scattering by Infinite Cylinders | 27
27
32
35
44
44 | | APPENDIX: COMPUTER PROGRAM | 51 | | REFERENCES | 60 | # LIST OF ILLUSTRATIONS | Figure | Title | Page | |--------|--|------| | 1. | Geometry for the source point, field point, and origin | . 22 | | 2. | Geometry for the scattering theory | . 25 | | 3. | Scattering by a finite volume | . 32 | | 4. | Phase change due to scattering | . 33 | | 5. | Geometry of Rayleigh-Gans scattering | . 34 | | 6. | Geometry of scattering by a cylinder | . 35 | | 7. | Scattering angles | . 40 | | 8. | Cylindrical functions | . 43 | | 9. | The effect of varying the length ℓ of a finite cylinder of radius $a = 0.03 \mu m$ and refractive index $m = 1.33$ (— $\ell = 0.1 \mu m$, —— $\ell = 1 \mu m$, —— $\ell = 10 \mu$) | . 48 | | 10. | Cylinder scattering in the plane defined by the cylinder axis and incident beam | . 49 | | 11. | a. The experiment geometryb. Scattering from thick wirec. Scattering from thin wire | . 50 | | A-1. | Flow chart for Rayleigh-Gans scattering program | . 59 | | | LIST OF TABLES | | | Table | Title | Page | | 1. | Electromagnetic Quantities in SI Units | . 3 | | 2. | The Diffraction Functions | 42 | # **DEFINITION OF SYMBOLS** | Symbol | Definition | |---|--| | A
~ | Vector potential | | a | Radius of cylinder | | B _∼ | Magnetic induction | | c | Velocity of light | | $\sum_{i=1}^{n}$ | Electric displacement | | E
∼ | Electric field | | ₩ | Magnetic field | | J
~ | Current density | | k
~ | Propagation constant $(2\pi\hat{n}/\lambda)$ | | L | Energy flux density at a surface | | Q | Length of cylinder | | $\hat{\ell}$, \hat{m} , \hat{n} , \hat{r} , $\hat{\epsilon}$ | Unit vectors | | M
∼ | Magnetization | | m | Refractive index | | P
~ | Polarization vector | | p
≈ | Dipole moment | | S
~ | Poynting vector | | <u>S</u> | Scattering matrix | | $S_{\mathbf{i}}$ | Scattering amplitude functions | | v | Velocity | # **DEFINITION OF SYMBOLS (Concluded)** | Symbol | Definition | |---|--| | а | Polarizability | | а | Tilt angle | | β | Bisectrix angle | | ϵ | Permittivity or dielectric constant | | ϵ_0 | Permittivity of free space | | θ | Scattering angle | | λ | Wavelength | | μ | Permeability | | μ_0 | Permeability of free space | | ρ | Charge density | | σ | Electric conductivity | | $\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}$ | Differential scattering cross section | | φ | Scalar electric potential | | φ. | Azimuth angle between the plane of incident beam and z-axis and the scattering plane | | ω | Angular frequency | ### **TECHNICAL MEMORANDUM X-64545** # **ELECTROMAGNETIC SCATTERING BY CYLINDERS - AN INTRODUCTION** ### **SUMMARY** This report, the first of a series of papers, presents an introduction to the scattering of electromagnetic waves by cylinders. The basic scattering features particular to cylinders are discussed from the Rayleigh-Gans theory. In the first part of the report a review of electromagnetism and a derivation of dipole radiation are presented. In the second part, the basic scattering theory is given. From the equations for dipole radiation, the theory of scattering by cylinders according to the Rayleigh-Gans theory is developed. A computer program to calculate the scattering intensity functions is presented. ### INTRODUCTION This report is the first of a series of papers describing the scattering of electromagnetic waves by cylinders. The applications are numerous, e.g., in studying cylindrical plasma, polymers, paints, rodlets, and platelets; in the fields of astronomy, chemistry, meteorology, and physics. Cylindrical scattering differs from spherical scattering in several important ways. There is a loss in the degree of symmetry introducing anisotropic processes which can generally be characterized by a shape factor. There are off-diagonal components in the scattering matrix which arise from the mixing of the electric field components. The general
methods to be discussed in these reports are (1) Rayleigh, (2) Rayleigh-Gans, (3) infinite cylinders, (4) finite cylinders by neglecting end effects, (5) geometric scattering, (6) Watson transformations, (7) Wiener-Hopf technique, (8) perturbation techniques, (9) symmetry techniques, (10) S-matrix theory, and (11) diffraction theory. ### **ELECTROMAGNETIC THEORY** # **Maxwell Equations** Light, electromagnetic radiation, is described by Maxwell's equations. All theoretical optics problems, including scattering problems, can be solved formally by using Maxwell's equations. The state of excitation (force) which is established in space and detected by the presence of an electric charge is said to constitute an electromagnetic field. The electromagnetic field is a vector field, and associated with it are the two vectors E and B, called the electric field vector and the magnetic induction vector, respectively. The spatial and temporal derivatives of these two vectors are defined by Maxwell's simultaneous partial differential equations [1]: $$\nabla \cdot \overset{\mathbf{D}}{\sim} = \rho \tag{1}$$ $$\nabla \cdot \mathbf{B} = 0 \tag{2}$$ $$\nabla \times \stackrel{\cdot}{E} = -\frac{\partial B}{\partial t} \tag{3}$$ $$\nabla \times \overset{\mathbf{H}}{\sim} = \overset{\mathbf{J}}{\sim} + \frac{\partial \overset{\mathbf{D}}{\sim}}{\partial t}$$ (4) where ρ is the electric charge density. The vectors $\overset{D}{\sim}$, $\overset{H}{\sim}$, and $\overset{J}{\sim}$, are the electric displacement, the magnetic vector, and the electric current density, respectively. For macroscopic media, the dynamical response of the aggregates of the atoms is summarized in the constitutive relations for isotropic, permeable, conducting dielectrics [2]: $$D = \epsilon E \tag{5}$$ $$\int_{-\infty}^{\infty} = \sigma \, \frac{E}{E} \tag{6}$$ $$H = \frac{B}{\mu} \tag{7}$$ where ϵ is the electric permittivity, σ is the specific electrical conductivity, and μ is the magnetic permeability. In this work, ϵ and μ are assumed to be scalars. Maxwell's equations are the results of particular experimental laws: equation (1) from Coulomb's law, equation (4) from Ampere's law, equation (3) from Faraday's law, and equation (2) from the observed nonexistence of magnetic monopoles. Table 1 gives the units of the electromagnetic quantities. TABLE 1. ELECTROMAGNETIC QUANTITIES IN SI UNITS | Symbol | Quantity | Units ^a | | |--|-----------------------|-------------------------------------|--| | E
∼ | Electric Field | N/C | | | H
∼ | Magnetic Field | C/m·sec | | | D | Electric Displacement | C/m² | | | B
~ | Magnetic Induction | N·sec/C·m | | | S
~ | Poynting's Vector | N·m/sec·m ² | | | c | Speed of Light | m/sec | | | ϵ | Electric Permittivity | $\mathrm{C^2/N}{\cdot}\mathrm{m^2}$ | | | μ | Magnetic Permeability | N·sec²/C² | | | a. $N = newtons$, $C = coulombs$, and $m = meters$. | | | | ### **Wave Equations** Maxwell's equations predict the existence of electromagnetic waves propagating with the velocity of light, which lead to the electromagnetic theory of light. The wave equations are obtained by vector operations [3] on Maxwell's equations. The equations are usually solved in applications using the appropriate boundary conditions for a particular problem. Assuming the isotropic case (the constitutive equations), $$H = \frac{B}{\sim}$$ $$D = \epsilon E$$, and $J = \sigma E$ then in a region with no free charges, Maxwell's equations are: $$\nabla \cdot \epsilon \stackrel{E}{=} 0 \tag{8}$$ $$\nabla \cdot \overset{\mathbf{B}}{\sim} = 0 \tag{9}$$ $$\nabla \times \stackrel{\cdot}{E} = -\frac{\partial B}{\partial t} \tag{10}$$ $$\nabla \times \frac{\mathbf{B}}{\widetilde{\mu}} = \sigma \mathbf{E} + \epsilon \frac{\partial \mathbf{E}}{\partial \mathbf{t}}$$ (11) Taking the curl of equation (10), we have $$\nabla \times (\nabla \times \stackrel{\cdot}{\Sigma}) = -\frac{\partial}{\partial t} (\nabla \times \stackrel{\cdot}{\Sigma})$$ (12) On substituting equation (11) for the curl $\underset{\sim}{B}$, we obtain $$\nabla \times (\nabla \times E) = -\frac{\partial}{\partial t} \left(\mu \sigma E + \mu \epsilon \frac{\partial E}{\partial t} \right)$$ (13) Now, for any vector it is true that in Cartesian coordinates $$\nabla \times (\nabla \times \stackrel{\cdot}{E}) = \nabla (\nabla \cdot \stackrel{\cdot}{E}) - \nabla^2 \stackrel{\cdot}{E}$$ but $\nabla \cdot \mathbf{E} = 0$ in the charge free region. Therefore, equation (13) becomes $$\nabla^{2} \underbrace{E} - \mu \sigma \frac{\partial E}{\partial t} - \mu \varepsilon \frac{\partial^{2} E}{\partial t^{2}} = 0 \qquad (14)$$ Similarly, take the curl of equation (11): $$\nabla \times (\nabla \times \underline{B}) = \sigma \mu \nabla \times \underline{E} + \mu \epsilon \frac{\partial}{\partial t} (\nabla \times \underline{E})$$ (15) Then, upon substituting from equation (10): $$\nabla \times (\nabla \times \mathbf{B}) = -\sigma \mu \frac{\partial \mathbf{B}}{\partial t} - \mu \epsilon \frac{\partial^2 \mathbf{B}}{\partial t^2}$$ or $$\nabla^2 \stackrel{\text{B}}{\sim} - \sigma \mu \stackrel{\partial \stackrel{\text{B}}{\sim}}{\sim} - \mu \epsilon \stackrel{\partial^2 \stackrel{\text{B}}{\sim}}{\rightarrow} = 0 \qquad (16)$$ Equations (14) and (16) are the inhomogeneous vector wave equations for E and B. In a nonconducting medium, $\sigma = 0$ and the second term in equations (14) and (16) vanishes, leaving a propagation equation for waves with a velocity $v = 1/\sqrt{\mu\epsilon}$. The boundary conditions at an interface between two media are [4]: 1. The normal component of $\underset{\sim}{B}$ is continuous. $$(\mathbf{B_2} - \mathbf{B_1}) \cdot \hat{\mathbf{n}} = 0$$ 2. There is a discontinuity in the normal component $\overset{D}{\sim}$ equivalent to K, the surface charge density, $$(D_2 - D_1) \cdot \hat{n} = K$$ 3. The tangential component of $\underset{\sim}{E}$ is continuous, $$(E_2 - E_1) \times \hat{n} = 0$$ 4. There is a discontinuity in the tangential component of $\overset{H}{\sim}$ equal to $\overset{L}{\sim}$, the surface current density, $$(\underbrace{H_2 - H_1}_{\sim}) \times \hat{n} = \underbrace{L}_{\sim}$$ # **Plane Waves** We now consider the homogeneous vector wave equations ($\sigma = 0$) in which the field depends only on one coordinate r and on time. Such waves are said to be "plane": $$\nabla^2 \frac{E}{\sim} - \mu \epsilon \frac{\partial^2 E}{\partial t^2} = 0$$ $$\nabla^2 \mathbf{B} - \mu \epsilon \frac{\partial^2 \mathbf{B}}{\partial t^2} = 0$$ Assume $$\begin{bmatrix} E & (r, t) = E_0 & f(r, t) \\ \sim & \sim \end{bmatrix}$$ where $f(\mathbf{r}, t)$ satisfies the scalar wave equation: $$\nabla^2 f(\mathbf{r}, t) - \mu \epsilon \ddot{f}(\mathbf{r}, t) = 0 . \qquad (17)$$ Now let $$f(r, t) = f(\hat{n} \cdot r - vt)$$; then $$\nabla f(\mathbf{r}, t) = f'(\hat{\mathbf{n}} \cdot \mathbf{r} - vt) \hat{\mathbf{n}} \cdot \nabla \mathbf{r}$$ but $\nabla \underline{r}$ is the idemfactor [3]. Thus, $$\hat{\mathbf{n}} \cdot \nabla \mathbf{r} = \hat{\mathbf{n}}$$ and $$\nabla f(\underline{r}, t) = \hat{n} f'(\hat{n} \cdot \underline{r} - vt)$$ $$\nabla^2 f(\mathbf{r}, t) = \nabla \cdot \nabla f = \nabla \cdot \hat{\mathbf{n}} f' = \hat{\mathbf{n}} \cdot \nabla f' = \hat{\mathbf{n}} \cdot \hat{\mathbf{n}} f'' = f''$$ Also $$\ddot{f} = v^2 f'' \tag{18}$$ From (17) and (18) we have $$v = \frac{1}{\sqrt{\mu \epsilon}} \tag{19}$$ Hence, the solution for $\underset{\sim}{E}$ and $\underset{\sim}{B}$ is $$\underset{\sim}{E}(\mathbf{r},t) = \underset{\sim}{E}_{0} f(\hat{\mathbf{n}} \cdot \mathbf{r} - \mathbf{v}t)$$ $$\underset{\sim}{B}(r, t) = \underset{\sim}{B_0} g(\hat{n} \cdot r - vt)$$ The wave equations do not relate $f, g, \frac{E}{\infty}$, and $\frac{B}{\infty}$, but Maxwell's equations do. From Equation (8) $$\Delta \cdot \stackrel{\sim}{E} = 0$$ and substituting $$E = E_0 f(\hat{n} \cdot r - vt) ,$$ we have $$\nabla \cdot (\stackrel{E_0}{\sim} f) = \stackrel{E_0}{\sim} \cdot \nabla f = \stackrel{E_0}{\sim} \cdot \hat{n} f' = 0$$ Therefore, $$\begin{bmatrix} \mathbf{E_0} \cdot \hat{\mathbf{n}} = \mathbf{0} \\ \mathbf{0} \end{bmatrix} , \tag{20}$$ which states that $\stackrel{E}{\sim}$ is transverse to the direction of propagation. Similarly, for $\stackrel{B}{\sim}$ $$\mathbf{B_0} \cdot \hat{\mathbf{n}} = 0 \tag{21}$$ From equation (10), we have: $$-\overset{\cdot}{\underset{\sim}{\mathbf{B}}} = \nabla \times \overset{\cdot}{\underset{\sim}{\mathbf{E}}}$$ $$-\overset{\cdot}{\underset{\approx}{B}} = \nabla \times (\overset{\cdot}{\underset{\approx}{E_0}} f)$$ $$-\stackrel{\cdot}{\underset{\sim}{B}} = \nabla f \times \underset{\sim}{\underset{\sim}{E_0}} = \hat{n} \times \underset{\sim}{\underset{\sim}{E_0}} f'$$ From equations (18), (19) and $$\underset{\sim}{B} = \underset{\sim}{B_0} g (\hat{n} \cdot r - vt) ,$$ we have $$-\overset{\cdot}{\underset{\sim}{\text{B}}} = -\overset{\cdot}{\underset{\sim}{\text{B}_0}}\overset{\cdot}{\overset{\cdot}{\text{g}}} = -\overset{\cdot}{\underset{\sim}{\text{B}_0}} \frac{g'}{\sqrt{\mu\epsilon}}$$ hence, $$\frac{-B_0 g'}{\sqrt{\mu\epsilon}} = \hat{n} \times E_0 f'$$ $$\frac{1}{\sqrt{\mu\epsilon}} \quad \mathbf{B_0} \, \mathrm{dg} = \hat{\mathbf{n}} \times \mathbf{E_0} \, \mathrm{df}$$ $$\frac{\mathbf{B}}{\approx} = \sqrt{\mu \epsilon} \, \hat{\mathbf{n}} \times \mathbf{E} \qquad . \tag{22}$$ ### **Propagation Constant** For a plane wave propagating along the positive z-axis, the component of $\stackrel{E}{\sim}$ along the x-axis can be written as: $$E_{X} = A e^{i(kz - \omega t)}$$ (23) where only the real part of the exponential is to be taken as the physical quantity. Substituting equation (23) into equation (14) yields $$-k^2 A e^{i(\omega t - kz)} + \mu \sigma \left(i\omega A e^{i(\omega t - kz)}\right) + \mu \epsilon \omega^2 A e^{i(\omega t - kz)} = 0$$ Therefore, the propagation constant, k, is related to the constitutive
constants of the medium $$k^2 = \mu \epsilon \omega^2 + i \mu \sigma \omega \qquad , \tag{24}$$ and may be represented as [4] $$k = a_1 + i\beta_1$$ where $$a_1 = \omega \left\{ \frac{\mu \epsilon}{2} \left[\left(1 + \frac{\sigma^2}{\epsilon^2 \omega^2} \right)^{1/2} + 1 \right] \right\}^{1/2}$$ and $$\beta_1 = \omega \left\{ \frac{\mu \epsilon}{2} \left[\left(1 + \frac{\sigma^2}{\epsilon^2 \omega^2} \right)^{1/2} - 1 \right] \right\}^{1/2}$$ Thus, for a conducting or dissipative medium $(\sigma > 0)$, the propagation constant is complex, providing a damping part $e^{-\beta_1 Z}$ to the wave which corresponds to absorption. ### Polarization [2] The plane wave $$E = \hat{\epsilon}_1 E_0 f(\hat{n} \cdot r - vt)$$ is a wave with its electric field vector always in the direction $\hat{\epsilon}_1$. Such a wave is said to be linearly polarized in the direction of $\hat{\epsilon}_1$. To describe a general state of polarization, two linearly polarized independent waves are needed. Consider harmonic plane waves $$f(r, t) = e^{i(k \cdot r - \omega t)}$$ where $$\frac{\omega}{k} = v$$, and $k = k\hat{r}$ Then the general state of polarization can be described with the following two waves: $$\mathbf{E}_{1} = \hat{\epsilon}_{1} \mathbf{E}_{1} \mathbf{e}^{i \mathbf{k} \cdot \mathbf{r} - i \omega t}$$ $$E_2 = \hat{\epsilon}_2 E_2 e^{i \mathbf{k} \cdot \mathbf{r} - i \omega t}$$ with $$B_j = \sqrt{\mu \epsilon} \hat{n} \times E_j$$ $j = 1, 2$ and $\hat{\epsilon}_1$ perpendicular to $\hat{\epsilon}_2$. The amplitudes E_1 and E_2 are complex numbers to allow the possibility of a phase difference between the waves. The general harmonic wave solution is a linear combination of E_1 and E_2 , $$E(\underline{r}, t) = (\hat{\epsilon}_1 E_1 + \hat{\epsilon}_2 E_2) e^{i(\underline{k} \cdot \underline{r} - \omega t)}$$ (25) If E_1 and E_2 have the same phase, equation (25) represents a linearly polarized wave, with its polarization vector making an angle $\theta = \tan^{-1} (E_2/E_1)$ with $\hat{\epsilon}_1$ and having a magnitude $E = \sqrt{E_1^2 + E_2^2}$. If E₁ and E₂ differ by a phase of 90 deg, then $$E(r, t) = E_0(\hat{\epsilon}_1 \pm i \hat{\epsilon}_2) e^{i(k \cdot r - \omega t)},$$ and the wave is circularly polarized. The "+" sign is for left circularly polarized waves or is said to have positive helicity. The negative sign is for right circularly polarized waves or negative helicity. For polychromatic radiation, the harmonic plane wave solution has the form $$\underset{\sim}{E}(\underline{r},t) = \sum_{\lambda=1}^{2} \int dk \, E_{0n} \, \hat{\epsilon}_{n}(k) \, e^{i(\underline{k} \cdot \underline{r} - \omega t)}$$ (26) where E_{0n} are amplitude functions determined by $E(\mathbf{r}, t)$ at a specified time, and $\hat{\epsilon}_n$ is the polarization vector. ### **Poynting Vector** For a periodic field such as the electromagnetic wave, the energy crossing a unit area per unit time is given by the Poynting vector $$S = E \times H$$ The time-average flux of energy is given by the real part of the complex Poynting vector: $$S = \frac{1}{2} (E \times H^*)$$ (27) Because $$H = \frac{B}{u} = \sqrt{\frac{\epsilon}{u}} \hat{n} \times E$$ by equation (22) for plane waves, then $$\underset{\sim}{\mathbf{S}} = \frac{1}{2} \sqrt{\frac{\epsilon}{\mu}} |\mathbf{E}|^2 \, \hat{\mathbf{n}} \quad .$$ The energy density & is $$\varepsilon = \frac{|S|}{c}$$ The Poynting vector is in the direction of propagation and can be regarded as a measure of the intensity of the wave at a point. The Poynting vector gives the flux density at the surface, L, which is called by Van de Hulst the intensity, "I", $$S = c & k = \hat{k} L = \hat{k} "I"$$ # **Electromagnetic Potentials [2]** Vector potentials are often introduced to simplify problem solving. According to equation (2), $$\nabla \cdot \mathbf{B} = 0 \qquad ;$$ then the field of $\mathop{B}\limits_{\boldsymbol{\sim}}$ is always solenoidal. Since $$\nabla \cdot (\nabla \times \underbrace{\mathbf{v}}) \equiv 0$$ $\underset{\sim}{B}$ can be represented as the curl of another vector $\underset{\sim}{A}_0$: $$\underset{\sim}{\mathbf{B}} = \nabla \times \underset{\sim}{\mathbf{A}}_{0} \tag{28}$$ However, $\underset{\sim}{A_0}$ is not uniquely defined by equation (28) because $\underset{\sim}{B}$ is equal also to the curl of some vector $\underset{\sim}{A}$, $$\frac{\mathbf{B}}{\approx} = \nabla \times \mathbf{A} \qquad , \tag{29}$$ where $$\mathbf{A} = \mathbf{A_0} - \nabla \psi \qquad ;$$ Since $$\nabla \times (\nabla \psi) \equiv 0$$ ψ is any scalar function of position. If $\underset{\sim}{\mathbf{B}}$ is replaced in $$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$ by either equations (18) or (29), then $$\nabla \times \left(\underbrace{\mathbf{E}}_{\sim} + \frac{\partial \mathbf{A_0}}{\partial \mathbf{t}} \right) = 0$$ or $$\nabla \times \left(\frac{E}{\sim} + \frac{\partial A}{\partial t} \right) = 0$$ Thus the fields of the vector $$E + \frac{\partial A_0}{\partial t}$$ or $$E + \frac{\partial A}{\partial t}$$ are irrotational and equal to gradients of scalar functions ϕ and ϕ_0 : $$E = -\nabla \phi_0 - \frac{\partial A_0}{\partial t}$$ (31) and $$E = -\nabla \phi - \frac{\partial A}{\partial t}$$ (32) The functions ϕ and ϕ_0 are related by $$\phi = \phi_0 + \frac{\partial \psi}{\partial t}$$ To show this, recall that $\underset{\sim}{A}$ is given by $$\mathbf{A} = \mathbf{A_0} - \nabla \psi$$ and from equations (31) and (32), $$\nabla \phi_0 + \frac{\partial A_0}{\partial t} = \nabla \phi + \frac{\partial A}{\partial t} = \nabla \phi + \frac{\partial A_0}{\partial t} - \nabla \frac{\partial \psi}{\partial t}$$ $$\nabla \phi_0 = \nabla \phi - \nabla \frac{\partial \psi}{\partial t}$$ or $$\nabla \phi = \nabla \phi_0 + \nabla \frac{\partial \psi}{\partial t}$$ and finally, $$\phi = \phi_0 + \frac{\partial \psi}{\partial t}$$ The functions $\underset{\sim}{A}$ are vector potentials of the field, and the ϕ 's are scalar potentials. Using $\underset{\sim}{D} = \epsilon \underset{\sim}{E}$ and $\underset{\sim}{B} = \mu \underset{\sim}{H}$, then $$D = -\epsilon \left(\nabla \phi + \frac{\partial A}{\partial t} \right) \qquad H = \frac{1}{\mu} \nabla \times A$$ Equations (1) and (4) of Maxwell's equations yield: $$\nabla \times \nabla \times \stackrel{A}{\sim} + \mu \epsilon \quad \nabla \frac{\partial \phi}{\partial t} + \mu \epsilon \quad \frac{\partial^2 \stackrel{A}{\sim}}{\partial t^2} = \mu \stackrel{J}{\sim}$$ $$\nabla^2 \phi + \nabla \cdot \frac{\partial \stackrel{A}{\sim}}{\partial t} = -\frac{1}{\epsilon} \quad \rho$$ Imposing the Lorentz condition, $$\nabla \cdot \mathbf{A} + \mu \epsilon \frac{\partial \phi}{\partial t} = 0 \qquad , \tag{33}$$ we then have $$\nabla^2 \psi - \mu \epsilon \frac{\partial^2 \psi}{\partial t^2} = \nabla \cdot A_0 + \mu \epsilon \frac{\partial \phi_0}{\partial \epsilon}$$ (34) where ϕ_0 and $\overset{\mathbf{A}_0}{\sim}$ are particular solutions. ϕ and $\overset{\mathbf{A}}{\sim}$ are defined by $$\nabla \times \nabla \times \underbrace{\mathbf{A}}_{\sim} - \nabla \nabla \cdot \underbrace{\mathbf{A}}_{\sim} + \mu \epsilon \frac{\partial^{2} \underbrace{\mathbf{A}}_{\sim}}{\partial \mathbf{t}^{2}} = \mu \underbrace{\mathbf{J}}_{\sim}$$ $$\nabla^2 \phi - \mu \epsilon \frac{\partial^2 \phi}{\partial t^2} = -\frac{1}{\epsilon} \rho \tag{35}$$ Now, using $\nabla \times \nabla \times \underbrace{\mathbf{A}}_{\sim} = \nabla \nabla \cdot \underbrace{\mathbf{A}}_{\sim} - \nabla \cdot \nabla \underbrace{\mathbf{A}}_{\sim}$, $$\nabla^2 \underbrace{A}_{\sim} - \mu \epsilon \frac{\partial^2 A}{\partial t^2} = -\mu \underbrace{J}_{\sim} \qquad (36)$$ For the homogeneous case $$D = -\nabla \times A'$$ $$E = -\frac{1}{\epsilon} \nabla \times A'$$ $$E = -\mu \left(\nabla \phi' + \frac{\partial A}{\partial t} \right)$$ the wave equations for these potentials are: $$\nabla^2 \stackrel{\mathbf{A}'}{\sim} - \mu \epsilon \stackrel{\partial^2 \mathbf{A}'}{\sim} = 0 \tag{37}$$ $$\nabla^2 \phi' - \mu \epsilon \frac{\partial^2 \phi'}{\partial t^2} = 0 \tag{38}$$ with the condition that $$\nabla \cdot \mathbf{A}' + \mu \, \epsilon \, \frac{\partial \phi'}{\partial t} = 0 \qquad . \tag{39}$$ ### **Retarded Potentials** Starting from equations (35) and (36) $$\nabla^2 \stackrel{A}{\sim} -\mu \epsilon \frac{\partial^2 \stackrel{A}{\sim}}{\partial t^2} = -\mu \stackrel{J}{\sim}$$ (40) $$\nabla^2 \phi - \mu \epsilon \frac{\partial^2 \phi}{\partial t^2} = -\frac{1}{\epsilon} \rho , \qquad (41)$$ a solution of the inhomogeneous linear equations for an initial value problem can be represented as the sum of the solution of these equations without the right-hand side (RHS) and a particular solution of these equations with the RHS. To find the particular solution, we divide the whole space into infinitely small regions and determine the field produced by the changes located in one of these volume elements. Because of the linearity of the field equations, the actual field will be the sum of the fields produced by all such elements, i.e., an integral [5]. The charge de in a given volume element is, generally, a function of time. If we choose the origin of coordinates as the center of the volume element, then the charge density is $\rho = de(t) \delta(R)$ where R is the distance from the origin and δ represents the Dirac delta functions. Thus, we must solve the equation $$\nabla^2 \phi - \mu \epsilon \frac{\partial^2 \phi}{\partial t^2} = -\frac{1}{\epsilon} \operatorname{de}(t) \delta(R)$$ (42) Everywhere $\delta(R) = 0$ we have $$\nabla^2 \phi - \mu \epsilon \frac{\partial^2 \phi}{\partial t^2} = 0$$ For the case of central symmetry, i.e., ϕ is a function of R only, we have $$\frac{1}{R^2} \quad \frac{\partial}{\partial R} \quad \left(R^2 \quad \frac{\partial \phi}{\partial R}\right) - \mu \epsilon \quad \frac{\partial^2 \phi}{\partial t^2} = 0$$ Assuming $\phi = \chi(R, t)/R$; then
$$\frac{\partial^2 \chi}{\partial R^2} - \mu \epsilon \frac{\partial^2 \chi}{\partial t^2} = 0$$ But this is the equation for plane waves, whose solution has the form $$\chi = f_1 \left(t - \frac{R}{v} \right) + f_2 \left(t + \frac{R}{v} \right)$$ where $v = 1/\sqrt{\mu\epsilon}$. Since we want only a particular solution of the equation, it is sufficient to choose only one of the functions f_1 and f_2 . Usually it is convenient to take $f_2 = 0$, since this physically represents a wave that is observed before it is generated. Then, everywhere except at the origin, ϕ has the form, $$\phi = \frac{\chi \left(t - \frac{R}{v} \right)}{R} \tag{43}$$ So far, the function χ is arbitrary; we now choose it so that we also obtain the correct value for the potential at the origin. We must select χ so that at the origin equation (42) is satisfied. This is easily done, noting that as $R \to 0$ the potential increases to infinity, and, therefore, its derivatives with respect to the coordinates increase more rapidly than its time derivative. Consequently as $R \to 0$ we can, in equation (42), neglect $\mu \in \partial^2 \phi / \partial t^2$ compared with $\nabla^2 \phi$. Then equation (42) goes over to the familiar equation leading to Coulomb's law, i.e., from $$\nabla^2 \phi = -\frac{1}{\epsilon} \operatorname{de}(t) \delta(R)$$ and since $$\nabla^2 \left(\frac{1}{R}\right) = -4\pi \,\delta(R) \quad ,$$ we have $$\phi = \frac{\det(t)}{4\pi \, \epsilon R}$$ Thus, near the origin equation (43) must go over into the Coulomb's law, from which it follows that $\chi(t) = de(t)/4\pi \epsilon$, that is, $$\phi = \frac{\det\left(t - \frac{R}{v}\right)}{4\pi \epsilon R}$$ For an arbitrary distribution of charges $\rho(x, y, z, t)$, one can find the solution to equation (41). Let $de = \rho dV$ and integrate over the whole space. To this solution of the inhomogeneous equation we can still add the solution ϕ_0 of the homogeneous equation. Thus, the general solution has the form: $$\phi(x, y, z, t) = \frac{1}{4\pi\epsilon} \int_{V} \frac{1}{R} \rho\left(x', y', z', t - \frac{R}{V}\right) dV' + \phi_{0}$$ (44) where $R^2 = (x - x')^2 + (y - y')^2 + (z - z')^2$ and dV' = dx' dy' dz'. R is the distance from the volume element dV' to the "field point" at which we determine the potential. Similarly, $$\underset{\sim}{A}(x, y, z) = \frac{\mu}{4\pi} \int_{V} \frac{J\left(x', y', z', t - \frac{R}{V}\right) dV'}{R} + \underset{\sim}{A_0}$$ (45) Without ϕ_0 and A_0 the above are the "retarded potentials." The volume integrals in equations (44) and (45) represent the contributions from charge distributions contained in the volume element. A_0 and ϕ_0 represent the contributions from fields whose origin is external to the system. The solution of the wave equation can be accomplished "directly" with Green's functions, G, where G satisfies [5] $$\nabla^2 G - \mu \epsilon \frac{\partial^2 G}{\partial t^2} = \delta(R) \delta(t)$$ and the solution to this equation can be obtained by Fourier transforms. ### Dipole Radiation [2] In the following, the radiation from an electric dipole is discussed. Assume that the distribution of charges changes little during the time r'/c where r' refers to the position of the source point. Let the radiation of the system have periods of order T. Let a be the order of magnitude of the system. The time r'/c is of the order a/c. So that the distribution of charges in the system shall not change significantly during this time, it is necessary that a/c << T; but $cT = \lambda$, the wavelength, hence, a condition for the following discussion is $$a \ll \lambda$$ (46) Assume that $$\rho(\underline{r},t) = \rho(\underline{r}) e^{-i\omega t}$$ (47) $$\underbrace{J(\mathbf{r}, t)}_{\sim} = \underbrace{J(\mathbf{r})}_{\sim} e^{-i\omega t} \tag{48}$$ and that the electromagnetic potentials and fields have the same time dependence. Since the time-dependence factor is the same in all terms, it can be dropped. Then from equations (45) and (48) the retarded vector potential is $$\underbrace{A}_{\sim}(\mathbf{r}) = \frac{\mu}{4\pi} \int \underbrace{J(\mathbf{r}')}_{\sim \sim} \underbrace{\frac{i \, \mathbf{k} \, |\mathbf{r} - \mathbf{r}'|}{|\mathbf{r} - \mathbf{r}'|}}_{|\mathbf{r} - \mathbf{r}'|} d^3 \mathbf{r}' , \qquad (49)$$ where $|\mathbf{r} - \mathbf{r}'| = \mathbf{R}$, $k = \omega/c$, and $d^3 r' =$ infinitesimal volume element. Confining the source to a region that is small compared with the wavelength and considering r >> a (Fig. 1), then $$|\mathbf{r} - \mathbf{r}'| \simeq \mathbf{r} - \hat{\mathbf{n}} \cdot \mathbf{r}' + \dots$$ Figure 1. Geometry for the source point, field point, and origin. \hat{n} is a unit vector in the direction of r, and $$\underbrace{A}_{\sim}(\mathbf{r}) = \frac{\mu e^{i\mathbf{k}\mathbf{r}}}{4\pi \mathbf{r}} \int \frac{J_{\sim}(\mathbf{r}') e^{-i\mathbf{k}(\hat{\mathbf{n}} \cdot \mathbf{r}' + \dots)}}{\left[1 - \frac{\hat{\mathbf{n}} \cdot \mathbf{r}'}{\mathbf{r}} + \dots\right]} \tag{50}$$ If r >> a and $a << \lambda$ we can expand the exponential: $$\frac{e^{-ik\hat{n}\cdot r'+\ldots}}{1-\frac{\hat{n}\cdot r'}{r}+\ldots} = 1+\left(\frac{1}{r}-ik\right)(\hat{n}\cdot\frac{r'}{\sim})+\frac{1}{2}\left(\frac{2}{r^2}-\frac{2ik}{r}-k^2\right)(\hat{n}\cdot\frac{r'}{\sim})^2+\ldots$$ The mth term of the vector potential becomes $$A_{m} = \frac{\mu e^{ikr}}{4\pi r} \frac{(-ik)^{m}}{m!} \left(1 + \frac{a_{1}}{ikr} + \ldots + \frac{a_{m}}{(ikr)^{m}}\right) \int_{-\infty}^{\infty} (r') (\hat{n} \cdot r')^{m} d^{3}r'$$ where a_i are integers. In the far field where r>>a we have $$\lim_{kr\to\infty} A_m \to \frac{\mu e^{ikr}}{4\pi r} \quad \frac{(-ik)^m}{m!} \quad \int \underbrace{J(r')}_{\sim} (\hat{n} \cdot r')^m d^3 r'$$ (51) Taking m = 0, equation (51) becomes $$A(r) = \frac{\mu e^{ikr}}{4\pi r} \int_{-\infty}^{\infty} J(r') d^3 r'$$ Integrating by parts, the integral becomes $$\int d^3\,r'\, \mathop{J}\limits_{\textstyle \sim} (\underline{r'}) \ = \ - \ \int \mathop{c}\limits_{\textstyle \sim} r'\, \left(\nabla'\,\cdot\mathop{J}\limits_{\textstyle \sim}\right)\, d^3\,r' \ = \ -\, i\,\omega\, \int \mathop{c}\limits_{\textstyle \sim} r'\, \,\rho\, \left(\underline{r'}\right) \ d^3\,r'$$ The last step comes from the continuity equation $$-\frac{\partial \rho}{\partial t} = \nabla \cdot \mathbf{J}$$ or $$i\omega \rho = \nabla \cdot \mathbf{J}$$ Hence, the vector potential is $$A(r) = \frac{-i\omega\mu e^{ikr}}{4\pi r} \quad p$$ (52) where $p \in \mathbb{R}$ the electric dipole moment is defined as $$p = \int r' \rho(r') d^3r'$$ (53) The electric dipole fields are $$\mathbf{B} = \nabla \times \mathbf{A} = \frac{-\mu \omega k}{4\pi} \quad (\hat{\mathbf{n}} \times \mathbf{p}) \quad \frac{e^{i\mathbf{k}\mathbf{r}}}{\mathbf{r}} \left(1 - \frac{1}{i\mathbf{k}\mathbf{r}}\right)$$ $$\begin{split} &\overset{\text{I}}{\approx} = -\frac{\mathrm{i}}{\omega\mu\epsilon} \, \nabla \times \overset{\text{B}}{\approx} = -\mathrm{i} \, \frac{\omega}{\mathrm{k}^2} \, \nabla \times \overset{\text{B}}{\approx} \\ &= \frac{\mathrm{k}^2}{4\pi\epsilon} \, (\hat{\mathbf{n}} \times \overset{\text{P}}{\approx}) \, \times \hat{\mathbf{n}} \, \frac{\mathrm{e}^{\mathrm{i}\mathbf{k}\mathbf{r}}}{\mathrm{r}} \, + \frac{1}{4\pi\epsilon} \left[3 \, \hat{\mathbf{n}} \, (\hat{\mathbf{n}} \cdot \overset{\text{P}}{\approx}) - \overset{\text{P}}{\approx} \right] \left(\frac{1}{\mathrm{r}^3} - \frac{\mathrm{i}\mathbf{k}}{\mathrm{r}^2} \right) \, \, \mathrm{e}^{\mathrm{i}\mathbf{k}\mathbf{r}} \end{split}$$ In the far-field zone, $$\frac{\mathbf{B}}{\mathbf{E}} = -\omega \, \mathbf{k} \mu \, \frac{e^{i\mathbf{k}\mathbf{r}}}{4\pi \, \mathbf{r}} \, (\mathbf{p} \times \mathbf{n})$$ $$\mathbf{E} = -\frac{\omega}{\mathbf{k}} \, \mathbf{B} \times \hat{\mathbf{n}} = \frac{e^{i\mathbf{k}\mathbf{r}}}{4\pi \, \epsilon \, \mathbf{r}} \, \mathbf{k}^2 \, \left((\mathbf{p} \times \hat{\mathbf{n}}) \times \hat{\mathbf{n}} \right) \quad . \tag{54}$$ ### SCATTERING THEORY ## **Scattering Amplitude** The scattering of plane waves by a particle is completely described by a knowledge of the fields at every point in space. Generally, the observer is interested in knowing the fields at his location. He desires to know the scattered fields at large distances from the scatterer where the scattered waves are less complex and appear spherical. In this region the amplitude of the scattered waves decreases inversely with the distance r from the particle, and the phase has a simple e^{+ikr} dependence. The scattering amplitude defines the strength and phase of this outgoing spherical wave. Since the amplitude and phase of the scattered radiation differ in various directions from the scatterer, the scattering amplitude $\mathscr A$ is a function of position. Since the electric field is transverse at large distances, we write the asymptotic form in the two-component notation: $$\stackrel{E(r)}{\sim} \xrightarrow{r \to \infty} \stackrel{E_0}{\sim} e^{ik \cdot r} \stackrel{ik \cdot r}{\sim} \mathscr{A} \quad (\theta, \phi) \stackrel{e^{ikr}}{r} \tag{55}$$ The scattering amplitude is most conveniently described by a scattering matrix which allows the polarization directions to be handled in a simple manner. Figure 2 shows the coordinates used to describe the direction of the incident and scattered radiation along with its polarizations. The x, y, and z axes are fixed to the scatterer but chosen so that the z axis is along the direction of the incident radiation. The unit vector \hat{n} is in the direction of the incident radiation having the propagation Figure 2. Geometry for the scattering theory. vector k, and the unit vector \hat{n}' is similarly defined for the scattered radiation having the propagation vector k' [6]. The vectors \hat{n} and \hat{n}' (or k and k') define the scattering plane, and the angle between \hat{n} and \hat{n}' is the scattering angle θ (0 \leq θ \leq 180). The components
of the electric field are referred to the $\hat{\mathbf{r}} \cdot \hat{\ell}$ system for the incident radiation and the $\hat{\mathbf{r}}' \cdot \hat{\ell}'$ system for the scattered radiation. These systems simplify the discussion of polarization direction. The unit vector $\hat{\mathbf{r}}$ is perpendicular to the scattering plane, and the x-axis of the particle makes an angle ϕ with $\hat{\ell}$. The unit vector $\hat{\ell}$, which is in the scattering plane, is chosen so that $\hat{\mathbf{r}} \times \hat{\ell} = \hat{\mathbf{n}}$, and the unit vector $\hat{\ell}'$ is chosen so that $\hat{\mathbf{r}}' \times \hat{\ell}' = \hat{\mathbf{n}}'$. The unit vectors $\hat{\mathbf{r}}$ and $\hat{\mathbf{r}}'$ are the same. The quantities $E_{0\,\mathbf{r}}$ and $E_{0\,\ell}$ are the amplitudes of the components of the electric field in the incident beam along the two directions defined by $\hat{\mathbf{r}}$ and $\hat{\ell}$. Likewise, $E_{\mathbf{r}}$ and E_{ℓ} are the electric field components of the scattered radiation along $\hat{\mathbf{r}}'$ and $\hat{\ell}'$. The scattering amplitude tensor which relates the incident and scattered waves is defined by $$E_{\text{Sca}} = \mathcal{A}(\theta, \phi) \frac{e^{ikr}}{r} = \underbrace{S}_{=}(\theta, \phi) \underbrace{E_{0}}_{\sim} \frac{e^{+ikr}}{r}$$ (56) or $$\begin{pmatrix} E_{\ell} \\ E_{r} \end{pmatrix} = \begin{pmatrix} S_{2} & S_{3} \\ S_{4} & S_{1} \end{pmatrix} \quad \begin{pmatrix} E_{0 \ell} \\ E_{0 r} \end{pmatrix} \frac{e^{ikr}}{r}$$ The four scattering amplitude functions S_1 , S_2 , S_3 , and S_4 are all functions of θ and ϕ and, in general, are complex. As stated above, the components (E_{ℓ}, E_r) and (E_{ℓ}, E_r) are referred to different sets of coordinates, i.e., $(\hat{\ell}', \hat{r}')$ and $(\hat{\ell}, \hat{r})$. Hence the scattering amplitude tensor is a function of k and k', i.e., $$\underline{\underline{S}}(\theta,\phi) = \underline{\underline{S}}(k,k') .$$ The linear relation implied by the S-matrix (scattering matrix) between $\stackrel{E}{\underset{\sim}{\sim}}$ and $\stackrel{E}{\underset{\sim}{\sim}}$ is a consequence of the linearity of Maxwell's equation. Because $\stackrel{E}{\underset{\sim}{\sim}}$ and $\stackrel{E}{\underset{\sim}{\sim}}$ are vectors, $\stackrel{\underline{\underline{S}}}{\underset{\sim}{\sim}}$ ($\stackrel{\underline{\underline{K}}}{\underset{\sim}{\sim}}$) must be a tensor as shown. For no scattering, $\stackrel{\underline{\underline{S}}}{\underset{\sim}{\sim}}$ reduces to a unit matrix. ### **Differential Cross Section** The differential scattering cross section $d\sigma/d\Omega$ is the ratio of the flux scattered from the object per unit solid angle to the incident flux on the object per unit area. $$\frac{d\sigma}{d\Omega} = \frac{\text{energy scattered/unit time/unit solid angle}}{\text{energy incident/unit time/unit area}} . \tag{57}$$ In terms of Poynting's vector, S, for the incident and scattered fluxes, we have $$\frac{d\sigma}{d\Omega} = \left| \begin{array}{c} \frac{S_{sca}}{S_{inc}} \\ \frac{S_{inc}}{S_{inc}} \end{array} \right| R^2 = \left| \begin{array}{c} L_{sca} \\ L_{inc} \end{array} \right| R^2$$ # Scattering by Electric Dipoles (Rayleigh Scattering) We now consider an electric dipole at the origin of a Cartesian coordinate system upon which a monochromatic plane wave impinges from along the negative z-axis (Fig. 2). If the electric dipole is generated by electrons and if the incident wave is a harmonic plane wave of the form, $$E = E_0 \hat{i} e^{ikz - i\omega t}$$ then the equation of motion is $$m\ddot{r} = e E (z = 0)$$ Since p = er, the electric dipole moment is found from $$\ddot{p} = \frac{e^2}{m} \approx (z = 0) ,$$ to be $$p = -\frac{e^2}{\omega^2 m} E_0 \hat{i}$$ Note that the use of E at z=0 in the equation of motion implies that $r << \lambda$, i.e., the dipole approximation. In a dielectric in the presence of an externally applied electric field, the molecular dipoles are streteched and become oriented. A net electric moment is produced in the direction of the applied field. The dipole moment per unit volume for an isotropic dielectric medium is related to the external electric field by $$p = a E$$ where $a [C^2 m/N]$ is the proportionality constant, the polarizability, and is dependent on the frequency of E. From the discussion on dipole radiation the radiation fields for an electric dipole are [eq. (54)] $$E = -\frac{\omega}{k} \quad E \times \hat{n} = \frac{e^{ikr}}{4\pi\epsilon r} \quad k^2 \left((p \times \hat{n}) \times \hat{n} \right)$$ $$\mathbf{B} = -\frac{\omega \mu \mathbf{k} e^{i\mathbf{k}\mathbf{r}}}{4\pi \mathbf{r}} \quad \mathbf{p} \times \hat{\mathbf{n}}$$ where E, B, and p were assumed to have a harmonic time dependence. Since the incident electric field is along the z-axis $$E_{inc} = E_0 e^{ikz - i\omega t} \hat{i}$$ or $$\mathbf{E}_{\text{inc}} = (\mathbf{E}_{0_{\text{f}}} \hat{\mathbf{r}} + \mathbf{E}_{0_{\text{f}}} \hat{\mathbf{l}}) e^{i\mathbf{k}\mathbf{z} - i\omega t}$$ where $E_{0r} = E_0 \sin \phi$ and $E_{0Q} = E_0 \cos \phi$. Hence $$B_{\text{sca}} = -\frac{\omega \mu k e^{ikr}}{4\pi r} (a E_{\text{inc}} \times \hat{n}')$$ where we have used $$p = a \, \text{E}_{inc} \, \Big|_{z=0} .$$ Then $$\mathcal{B}_{\text{sca}} = -\frac{\omega \mu k}{4\pi r} \ \alpha e^{ikr} \left(E_{0r} \hat{\mathbf{r}} \times \hat{\mathbf{n}}' + E_{0\ell} \hat{\ell} \times \hat{\mathbf{n}}' \right) \tag{58}$$ Now since $$\hat{\mathbf{r}} = \hat{\mathbf{r}}' \qquad \qquad \hat{\mathbf{r}} \times \hat{\mathbf{n}}' = -\hat{\boldsymbol{\ell}}'$$ $$\hat{\boldsymbol{\ell}} \times \hat{\mathbf{n}}' = \hat{\mathbf{r}} \cos \theta \qquad \hat{\boldsymbol{\ell}} \times \hat{\mathbf{n}} = \hat{\mathbf{r}}$$ where we have used $\xi = \angle (\hat{\ell}, \hat{n}')$ and $\cos \theta = \sin \xi$. Therefore, $$\underset{\sim}{B}_{sca} = -\frac{\omega \mu k a e^{ikr}}{4\pi r} (E_{0r}(-\hat{\ell}') + E_{0\ell}(\hat{r} \cos \theta))$$ and Hence, $$\begin{pmatrix} E_{\ell} \\ E_{r} \end{pmatrix} = E_{sca} = \frac{\alpha k^{2} e^{ikr}}{4\pi \epsilon r} \begin{pmatrix} \cos \theta & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} E_{0\ell} \\ E_{0r} \end{pmatrix}$$ $$= \begin{pmatrix} S_2 & S_3 \\ S_4 & S_1 \end{pmatrix} \begin{pmatrix} E_{0\ell} \\ E_{0r} \end{pmatrix} \frac{e^{ikr}}{r}$$ (60) where $$S_{2} = \frac{a k^{2} \cos \theta}{4\pi \epsilon}$$ $$S_{1} = \frac{a k^{2}}{4\pi \epsilon}$$ (61) The time-averaged Poynting vector for the scattered wave is $$S_{\text{sca}} = \frac{1}{2} (E_{\text{sca}} \times H_{\text{sca}}^*)$$ In the far radiation zone, $\stackrel{E}{\sim}$ and $\stackrel{H}{\sim}$ are perpendicular to each other and to the direction of propagation. For a harmonic wave under these conditions, $$\overset{\text{H}}{\sim} = \sqrt{\frac{\epsilon}{\mu}} \quad \hat{\mathbf{n}} \times \overset{\text{E}}{\sim} \qquad ;$$ thus $$S_{\text{sca}} = \frac{1}{2} \left(E_{\text{sca}} \times (\hat{n}' \times E_{\text{sca}}^*) \right) \sqrt{\frac{\epsilon}{\mu}} ,$$ $$S_{\text{sca}} = \frac{1}{2} \sqrt{\frac{\epsilon}{\mu}} \frac{a^2 k^4}{(4\pi\epsilon)^2 r^2} (E_{0r}^2 \hat{n}' + E_{0l}^2 \cos^2 \theta \hat{n}')$$ (62) Therefore, the energy flux densities $L = 1/2 \sqrt{\epsilon/\mu} E^2$ for the incoming and scattered waves are related by $$L_{sca} = \frac{a^2 k^4}{(4\pi\epsilon)^2 r^2} (L_{inc_r} + \cos^2 \theta L_{inc_{\ell}})$$ (63) If $\phi = 0$ deg, then $$L_{sca} = \frac{a^2 k^4}{(4\pi\epsilon)^2 r^2} \cos^2 \theta L_{inc} ;$$ if $\phi = 90 \deg$, $$L_{sca} = \frac{a^2 k^4}{(4\pi\epsilon)^2 r^2} L_{inc}$$, and if $\phi = 45$ deg or the incident radiation is unpolarized, $$L_{sca} = \frac{a^2 k^4}{(4\pi\epsilon)^2 r^2} \frac{1}{2} (1 + \cos^2 \theta) L_{inc}$$ (64) For natural incident radiation, this is the same as averaging over all polarization angles, $$L_{\text{sca}} = \frac{a^2 k^4}{(4\pi\epsilon)^2 r^2} \left(\frac{L_{\text{inc}}}{2\pi} \int_0^{2\pi} \sin^2 \phi d\phi + L_{\text{inc}} \frac{\cos^2 \theta}{2\pi} \int_0^{2\pi} \cos^2 \phi d\phi \right)$$ $$= \frac{a^2 k^4}{(4\pi\epsilon)^2 r^2} \frac{1}{2} (1 + \cos^2 \theta) L_{\text{inc}}$$ This scattering is called Rayleigh scattering. The differential scattering cross section becomes $$\frac{d\sigma}{d\Omega} = \frac{L_{\text{sca}} r^2}{L_{\text{inc}}} = \frac{a^2 k^4}{(4\pi\epsilon)^2} \frac{1}{2} (1 + \cos^2 \theta) \qquad (65)$$ ## Rayleigh-Gans Scattering [7] Assume that each volume element in some finite volume gives Rayleigh scattering and does so independently of the other volume elements. The waves scattered in a given direction by all these elements interfere because of the different positions of the volume elements. To calculate the interference effects we have to refer the phases of all scattered waves to a common origin of coordinates and then add the complex amplitudes (Fig. 3). Figure 3. Scattering by a finite volume. Consider the volume element in Figure 3. If p is the dipole moment per unit volume, the magnetic induction for the scattered field at point P is $$\underset{\sim}{B} = -\frac{\omega \mu k e^{ik R}}{4\pi R} \quad (p \ dV \times \hat{m}) \quad .$$ Integrating over the volume, this expression becomes $$\underset{\sim}{B} = -\frac{\omega \mu k}{4\pi} \int \frac{e^{ik} R}{R} dV (p \times m)$$ (66) With \hat{n} , a unit vector in the incident direction, and \hat{m} , a unit vector in the scattered direction, the phase of $e^{ik\,R}$ (Fig. 4), i.e., kR is $k\left[R_0+\frac{r}{r}\cdot(\hat{m}-\hat{n})\right]$. The wave "2" has to go $(\underline{r}\cdot\hat{n})$ farther to get to the scatterer, but for wave "1" the scatterer is $(\underline{r}\cdot\hat{m})$ farther in front of the origin, R_0 is large compared with the body size. Hence, $$\underline{B} = (\underline{p} \times \hat{m}) \left(-\frac{\omega \mu k}{4\pi} \right) \frac{e^{ikR_0}}{R_0} \int e^{ik \cdot \underline{r} \cdot (\hat{m} - \hat{n})} dV$$ which differs from Rayleigh scattering by a
factor of the form $f^{i\delta} dV$, where $\delta = k \mathbf{r} \cdot (\hat{\mathbf{m}} - \hat{\mathbf{n}})$. We now evaluate the normalized factor Figure 4. Phase change due to scattering. $$R(\theta,\phi) = \frac{1}{V} \int e^{i\delta} dV$$ (67) for a cylindrically shaped body. As seen from Figure 5 the vector $\hat{\mathbf{m}} - \hat{\mathbf{n}}$ has the length $2 \sin (\theta/2)$ along the bisectrix of the direction $\hat{\mathbf{m}}$ and $-\hat{\mathbf{n}}$. Hence, $$\delta = s \, 2 \, k \sin \frac{\theta}{2} \tag{68}$$ where $$s = r \cdot \frac{(\hat{m} - \hat{n})}{|\hat{m} - \hat{n}|}$$ (69) Hence, $$R(\theta,\phi) = \frac{1}{V} \int De^{ik s \sin \frac{1}{2} \theta} ds$$ (70) where we are integrating over "slices" perpendicular to the bisectrix, and each slice has an area D and thickness ds. Figure 5. Geometry of Rayleigh-Gans scattering. We have assumed that the phase shifts of the wavelets passing through the medium are small, i.e., $$2 \text{ ka } |\text{m} - 1| << 1$$ (71) where a is a length of the order of the size of the particle, and m = the index of refraction. # **Circular Cylinders of Finite Length** The function $R(\theta, \phi)$ can be calculated for the circular cylinder of finite length. Let its length by ℓ and its diameter 2a, and let the phase shift be small for a ray traversing the cylinder in any direction. The orientation of the cylinder with respect to the incident wave is arbitrary (Fig. 6). Figure 6. Geometry of scattering by a cylinder. The volume integration will be performed by using circular slices which are perpendicular to the cylinder axis since this is easier than using slices perpendicular to the bisectrix. To calculate e let $r = \hat{i}x + \hat{j}y$. Fix the axis of the cylinder so that the bisectrix lies in the y-z plane. Then, $\hat{m} - \hat{n} = a_1 \hat{j} + a_2 \hat{k}$ and $$\mathbf{r} \cdot (\hat{\mathbf{m}} - \hat{\mathbf{n}}) = \mathbf{y} \ \mathbf{a}_1$$ Since $|\hat{\mathbf{m}} - \hat{\mathbf{n}}| = 2 \sin \theta / 2$ and is in the same direction as the bisectrix, $$a_1 = 2 \sin \frac{\theta}{2} \cos \left(\frac{\pi}{2} - \beta \right)$$ or $$a_1 = 2 \sin \frac{\theta}{2} \sin \beta$$ where β is the angle between the cylinder axis and the bisectrix, and $$\sum_{n=0}^{\infty} \cdot (\hat{m} - \hat{n}) = 2 y \sin \frac{\theta}{2} \sin \beta$$ With this relation and with the phase referred to the center of the disk, $$R_{D}(\theta,\phi) = \frac{1}{D} \int e^{ikr \cdot (\hat{m} - \hat{n})} dD$$ becomes $$R_{D}(\theta,\phi) = \frac{1}{D} \int_{-a}^{+a} \int_{-\sqrt{a^{2}-y^{2}}}^{+\sqrt{a^{2}-y^{2}}} e^{2iky \sin \frac{\theta}{2} \sin \beta} dx dy$$ $$= \frac{2}{D} \int_{-a}^{+a} e^{2iky \sin \frac{\theta}{2} \sin \beta} \sqrt{a^{2}-y^{2}} dy$$ (72) We can make a change of variables by letting $$y = a\omega$$ and $$v = a2k \sin \frac{\theta}{2} \sin \beta$$ then $$R_{D}(\theta,\phi) = \frac{2}{D} \int_{-1}^{+1} e^{iv\omega} a^{2} \sqrt{1-\omega^{2}} d\omega$$ $$= \frac{2a^{2}}{\pi a^{2}} \int_{-1}^{+1} e^{iv\omega} \sqrt{1-\omega^{2}} d\omega$$ $$= \frac{2}{\pi} \left[\int_{0}^{1} e^{iv\omega} \sqrt{1-\omega^{2}} d\omega - \int_{0}^{-1} e^{iv\omega'} \sqrt{1-\omega'^{2}} d\omega' \right]$$ Let $\omega' = -\omega$ in the second integral $$R_{\mathrm{D}}(\theta,\phi) = \frac{2}{\pi} \int_{0}^{1} \mathrm{e}^{\mathrm{i} v \omega} \sqrt{1-\omega^{2}} \; \mathrm{d}\omega + \int_{0}^{1} \mathrm{e}^{\mathrm{-i} v \omega} \sqrt{1-\omega^{2}} \; \mathrm{d}\omega \quad ,$$ or $$R_{D}(\theta,\phi) = \frac{4}{\pi} \int_{0}^{1} \left(\frac{e^{iv\omega} + e^{-iv\omega}}{2}\right) \sqrt{1-\omega^{2}} d\omega$$ and hence $$R_{D}(\theta,\phi) = \int_{0}^{1} \cos v\omega \sqrt{1-\omega^{2}} d\omega$$ $$= F(v) = \frac{2}{v} J_{1}(v)$$ (73) where $J_n(v)$ is a Bessel function of order n and $$F(v) = \frac{4}{\pi} \int_{0}^{1} \cos v \omega \sqrt{1 - \omega^{2}} d\omega$$ (74) The phases of the disk have been referred to the center of the disk. In considering the whole cylinder, the phase can be referred to the center of the cylinder. This introduces another phase factor given by $$kz \hat{k} \cdot (\hat{m} - \hat{n})$$ But since $$(\hat{\mathbf{m}} - \hat{\mathbf{n}}) = \mathbf{a_1} \hat{\mathbf{j}} + \mathbf{a_2} \hat{\mathbf{k}}$$ the phase is $k z a_2$ where $a_2 = \cos \beta$. This phase effect is given by $$R_{L}(\theta,\phi) = \frac{1}{\ell} \int_{-\frac{\ell}{2}}^{+\frac{\ell}{2}} e^{i2kz \sin\frac{\theta}{2}\cos\beta} dz$$ (75) Let $$\mu = \ell k \sin \frac{\theta}{2} \cos \beta$$, $z = t \frac{\ell}{2}$, $dz = \frac{\ell}{2} dt$ then $$R_{L}(\theta,\phi) = \frac{1}{\ell} \int_{-\frac{\ell}{2}}^{\frac{\ell}{2}} e^{i\mu t} dt \frac{\ell}{2} = \frac{1}{2} \int_{0}^{1} e^{i\mu t} dt + \frac{1}{2} \int_{0}^{1} e^{-i\mu t} dt$$ $$= \int_{0}^{1} \cos \mu t dt$$ Thus we can say $$E(\mu) = \int_0^1 \cos \mu t \, dt = \left(\frac{\pi}{2\mu}\right)^{1/2} J_{\frac{1}{2}}(\mu) \qquad (76)$$ The final phase factor is the product of the two phase factors, i.e., $$R(\theta,\phi) = F\left(2 ka \sin \frac{\theta}{2} \sin \beta\right) E\left(k\ell \sin \frac{\theta}{2} \cos \beta\right).$$ The angle β and be related to the angle a between the incident light and the z-axis the angle $\theta/2$ and the azimuth angle ϕ between the incident light – z-axis plane and the incident light-scattered light plane by (Fig. 7) $$\cos \beta = -\cos a \sin \frac{\theta}{2} + \sin a \cos \frac{\theta}{2} \cos \phi \tag{77}$$ Figure 7. Scattering angles. To find the scattering amplitude tensor we follow the steps as in the Rayleigh scattering section to obtain: $$\underbrace{\mathbf{E}}_{\mathbf{E}} = -\frac{\omega \mu \mathbf{k}}{4\pi} \quad (\mathbf{p} \times \hat{\mathbf{m}}) \quad \frac{e^{\mathbf{i} \mathbf{k} R_{0}}}{R_{0}} \quad \mathbf{V} \, \mathbf{R} \, (\theta, \phi)$$ $$\underbrace{\mathbf{E}}_{\mathbf{E}} = \frac{\omega^{2} \mu}{4\pi} \left((\mathbf{p} \times \hat{\mathbf{m}}) \times \hat{\mathbf{m}} \right) \quad \frac{e^{\mathbf{i} \mathbf{k} R_{0}}}{R_{0}} \quad \mathbf{V} \, \mathbf{R} \, (\theta, \phi)$$ $$= \frac{\mathbf{k}^{2} \, (a \mathbf{V})}{4\pi \, \epsilon_{0}} \quad \frac{e^{\mathbf{i} \mathbf{k} R_{0}}}{R_{0}} \quad (\mathbf{E}_{0 \, \mathbf{r}} \, \hat{\mathbf{r}}' + \mathbf{E}_{\theta \, \ell} \cos \theta \, \hat{\ell}') \, \mathbf{R} \, (\theta, \phi)$$ (78) Hence, $$S_{1} = \frac{(aV) k^{2}}{4\pi \epsilon_{0}} R(\theta, \phi)$$ $$S_{2} = \frac{(aV) k^{2}}{4\pi \epsilon_{0}} \cos \theta R(\theta, \phi)$$ (79) We note that since $R(\theta, \phi)$ is independent of polarization effects the polarization will be that of a Rayleigh scattering particle: $$P(\theta) = \frac{|S_1|^2 - |S_2|^2}{|S_1|^2 - |S_2|^2} = \frac{1 - \cos^2 \theta}{1 + \cos^2 \theta} = \frac{\sin^2 \theta}{1 + \cos^2 \theta}$$ (80) The differential scattering cross section is $$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \frac{(a\mathrm{V})^2 \mathrm{k}^4}{(4\pi \,\epsilon_0)^2} \,\mathrm{R}^2(\theta,\phi) \,\frac{1}{2} \,\left(1 + \cos^2\,\theta\right) \tag{81}$$ The appendix gives a computer program listing for calculating the functions F and E and the scattering intensity functions. Also included, but not derived in this paper, is a phase factor for spheres G. Table 2 tabulates some values of these factors. Figure 8 shows them for comparison. TABLE 2. THE DIFFRACTION FUNCTIONS | U | E(U) | F(U) | e(u) | U | E(U) | F(U) | G(U) | |------------------|------------------|------------------|------------------|--------|------------------|------------------|------------------| | •00 | 1.00000 | 1.00000 | 1.00000 | 5.00 | -, 19178 | - 13103 | 05705 | | •10 | .99833 | 99875 | .99900 | 5 • 10 | - 18153 | - 13219 | 06453 | | •20 | •99335 | .99501 | .99601 | 5 • 20 | - 16990 | - 13201 | 07083 | | •30 | -98507 | .98879 | .99103 | 5.30 | 15703 | - 13055 | 07598 | | • 4 C | .97355 | .98013 | .98409 | 5.40 | 14310 | 12791 | 08002 | | •50 | •95885 | .96907 | .97522 | 5.50 | 12828 | 12416 | 08300 | | •60 | .94107 | .95567 | .96446 | 5.60 | 11273 | 11940 | 08498 | | • 70 | .92031 | .93999 | .95185 | 5.70 | 09661 | 11374 | 08599 | | .80 | .89670 | .92211 | .93745 | 5.80 | 08010 | 10725 | 08611 | | •90 | .87036 | .90211 | .92131 | 5.90 | 06337 | 10005 | 08539 | | 1-00 | .84147 | .88010 | .90351 | 6.00 | 04657 | 09223 | 08389 | | 1.10 | .81019 | .85619 | .88411 | 6.10 | 02986 | 08389 | 08158 | | 1.20 | .77670 | .83048 | .86321 | 6.20 | 01340 | 07513 | 07882 | | 1.30 | .74120 | .80311 | .84089 | 6.30 | .00267 | 06606 | 07537 | | 1.40 | •70389 | .77421 | .81723 | 6 - 40 | .01821 | 05676 | 07141 | | 1.50 | .66500 | .74392 | .79235 | 6-50 | .03310 | 04734 | 06699 | | 1.60 | .62473 | .71237 | .76633 | 5.60 | .04720 | 03787 | 06219 | | 1.70 | .58333 | .67972 | .73928 | 6.70 | .06043 | 02846 | 05707 | | 1.80 | .54103 | .64613 | .71132 | 6.80 | .07266 | 01918 | 05169 | | 1.90 | .49805 | .61174 | .68256 | 5.90 | .08383 | 01012 | 04612 | | 2.00 | .45465 | .57672 | .65310 | 7.00 | .09386 | -,00134 | 04041 | | 2.10 | .41105 | 54123 | .62306
.59256 | 7.10 | .10267 | .00709 | 03463 | | 2 • 20 | .36750 | .50542
.46945 | .56172 | 7 - 20 | .11023 | .01509 | 02883 | | 2 • 30 | •32422 | .43349 | .53064 | 7.30 | ·11650 | •02262 | 02306 | | 2 • 40
2 • 50 | .28144
.23939 | 39768 | .49946 | 7 - 40 | .12145 | .02963 | 01737 | | 2.60 | .19827 | 36217 | .46827 | 7.50 | .12507 | .03607 | 01182
00644 | | 2.70 | .15829 | .32711 | .43719 | 7.60 | .12736 | .04190
.04709 | 00127 | | 2.80 | .11964 | 29265 | .40632 | 7.70 | .12833 | .05163 | .00365 | | 2.90 | .08250 | 25892 | .37579 | 7 • 80 | .12802
.12645 | .05549 | .00829 | | 3.00 | .04704 | .22604 | . 34 56 8 | 8.00 | •12367 | . D5866 | .01262 | | 3.10 | .01341 | 19414 | .31609 | 8.10 | -11974 | .06114 | .01661 | | 3.20 | 01824 | .16334 | .28712 | 8.20 | .11472 | .06293 | .02025 | | 3.30 | 04780 | .13374 | .25886 | 8.30 | .10870 | .06403 | .02352 | | 3 - 40 | 07516 | .10543 | .23139 | 8.40 | .10174 | .06447 | .02640 | | 3.50 | 18022 | .07850 | .20479 | 8 -
50 | .09394 | .06426 | .02890 | | 3.60 | 12292 | .05304 | .17913 | 8 - 60 | .08540 | .06343 | .03099 | | 3.70 | 14320 | .02910 | .15447 | 8.70 | .07620 | .06200 | .03269 | | 3 • 8C | 16102 | .00675 | .13088 | 8.80 | .06647 | .06002 | .03400 | | 3.90 | 17635 | 01397 | .10840 | 8.90 | .05629 | .05751 | .03491 | | 4.00 | 18920 | 03302 | .08708 | 9.00 | .04579 | .05451 | .03544 | | 4 • 1.C | 19958 | -,05038 | .06697 | 9-10 | .03507 | .05108 | .03560 | | 4.20 | 20752 | 06602 | .04809
.03046 | 9.20 | .02423 | .04726 | .03541 | | 4 • 30 | 21306
21627 | 07995
09217 | .01411 | 9.30 | .01338 | .04310
.03865 | .03488
.03403 | | 4.40 | 21723 | - 10269 | 00095 | 9.40 | .00264 | 03395 | .03288 | | 4.50
4.60 | 21602 | - 11154 | 01473 | 9.50 | 00791
01816 | .02907 | .03146 | | 4.70 | 21275 | - 11876 | 02721 | 9.60 | 01818 | 02405 | .02979 | | 4.80 | 20753 | - 12437 | 03842 | 9.80 | 03740 | .D1895 | .02790 | | 4 • 90 | 20050 | - 12845 | 04836 | 9.90 | 04622 | 01381 | .02580 | | 4 - 30 | | | - · · · - | 1 2000 | | | | Figure 8. Cylindrical functions. ## **Randomly Oriented Cylinders [7]** To obtain the differential scattering cross section in the Rayleigh-Gans domain for randomly oriented cylinders, an integration over the solid angle of the orientation of the cylinder is performed: $$\overline{R^2} = \frac{1}{4\pi} \int R^2(\theta, \phi) d\Omega$$ (82) where $\overline{R^2}$ is an average cylindrical function for random orientation. The values θ and ϕ are considered fixed. The solid-angle integration reduces to an integration over β . For the case of thin rods $(R \to E)$, $$\overline{R^2} = \int_0^1 E^2 (z \cos \beta) d \cos \beta$$ $$= \frac{1}{z} \int_{0}^{2z} \frac{\sin \omega}{\omega} d\omega - \left(\frac{\sin z}{z}\right)^{2}$$ (83) where $z = k \ell \sin 1/2 \theta$. The first term is the sine integral. For the case of disks, $$\overline{R^2} = \int_0^1 F(z \sin \beta) d \cos \beta = \frac{2}{z^2} \left[1 - F(2z) \right]$$ (84) where $z = 2ka \sin 1/2 \theta$. # Lorentz-Lorenz Formula [8] The relation between polarizability and refractive index will now be derived. An external electric field stretches and orients molecular dipoles in a dielectric. The amount of polarization $\stackrel{P}{\sim}$ is equal to the average electric dipole moment per unit volume. The polarization induces a field which modifies the relation between the intensity $\stackrel{E}{\to}$ and the displacement vector $\stackrel{D}{\to}$. Hence, $$D = \epsilon_0 E + P$$ (85) The total polarization is caused by (1) polarization by stretching P_1 and (2) polarization by dipole orientation P_2 . The polarization caused by elastically "stretched" molecules is given by $$P_1 = N a E' \tag{86}$$ where N = the number of molecules per unit volume, a = proportionality constant (polarizability), and $\stackrel{\sim}{E}$ is the effective internal electric field for the dipoles. The polarization caused by orienting the permanent dipole moments can be approximated by $$P_2 = \frac{1}{3} \frac{p^2 N E'}{kT}$$ (87) where p is the molecular dipole moment, k is the Boltzmann constant, and T is the temperature. But for an oscillating field the relation becomes $$P_2 = \frac{Np^2}{3kT} \left(\frac{1}{1+i\omega\tau}\right) e^{i\omega\tau} E'$$ where τ is the relaxation time for the dipoles, and τ is related to the fractural torque on the molecules and the temperature. The Clausius-Mosetti theory gives the value of the internal field for a dipole as a function of the external field E and the polarization P. Consider a cavity within a dielectric. The local field in the cavity is made up of two parts: (1) the external field E and (2) the field produced by the polarization within the cavity. This second field can be calculated knowing that for a small area dA on the surface of a cavity the induced charge density is $P \cos \theta$. For a spherical cavity the amount of charge induced in a spherical zone is $2\pi r^2 P \sin \theta \cos \theta \ d\theta$, and the field at the center of the cavity is $1/2 \epsilon_0 P \cos^2 \theta \sin \theta \ d\theta$. Integrating over all the charges gives the total field as $P/3 \epsilon_0$. Hence, the internal field is $$E' = E + \frac{P}{3\epsilon_0}$$ (88) Using $\underset{\sim}{D} = \underset{\sim}{P} + \epsilon_0$ $\underset{\sim}{E} = \epsilon$ $\underset{\sim}{E}$, the Clausius-Mosetti relation is obtained: $$E' = \frac{P}{\epsilon - \epsilon_0} + \frac{P}{3 \epsilon_0}$$ $$E' = \left(\frac{\epsilon + 2 \epsilon_0}{\epsilon - \epsilon_0}\right) \quad \frac{P}{3 \epsilon_0}$$ (89) For polarization due to elastic stretching alone, $$\frac{P}{\frac{E}{E}} = 3 \epsilon_0 \qquad \frac{\frac{\epsilon}{\epsilon_0} - 1}{\frac{\epsilon}{\epsilon_0} + 2} = N\alpha$$ or in terms of the refractive index, $m = \sqrt{\epsilon/\epsilon_0}$, $$Na = 3 \epsilon_0 \left(\frac{m^2 - 1}{m^2 + 2}\right)$$ (Lorentz-Lorenz) (90) Including permanent dipoles gives the following expression: $$\frac{m^2 - 1}{m^2 + 2} = \frac{N}{3 \epsilon_0} \left[a + \frac{1}{3} \frac{p^2}{kT'} \frac{1}{1 + i \omega \tau} \right]$$ showing the variation of the complex refractive index with temperature and frequence. For very high frequencies the second term in the bracket is negligible. Then the Rayleigh-Gans differential scattering cross section in terms of the refractive index is $$\frac{d\sigma}{d\Omega} = k^4 V^2 \left(\frac{m-1}{2\pi}\right)^2 \frac{1}{2} \left(1 + \cos^2\theta\right) R^2 \left(\theta, \phi\right)$$ (91) where $$Na = 3 \epsilon_0 \xrightarrow{m^2 - 1} \xrightarrow{m^2 + 2} \xrightarrow{m \to 1} 2 \epsilon_0 (m - 1)$$ (92) ## Scattering by Infinite Cylinders In conclusion we will consider the specific case of a thin infinite cylinder. According to Cooke and Kerker [9], the radiation scattered from an infinite cylinder lies on the surface of a cone whose apical angle is twice the complement of the tilt angle. From Rayleigh-Gans scattering by cylinders (ka << 1), the expression for the scattered intensity is given by [7]: $$\frac{d\sigma}{d\Omega} = \frac{k^4 V^2 (m-1)^2}{8 \pi^2} (1 + \cos^2 \theta) \cdot E^2 \left(k\ell \sin \frac{\theta}{2} \cos \beta \right)$$ (93) For infinite cylinders $(\ell \to \infty)$ E becomes significant only when $\cos \beta = 0$, which includes $\theta = 0$, the forward scattering direction. This yields by equation (77) $$\cos a \sin\left(\left(\frac{1}{2}\right)\theta\right) = \sin a \cos\left(\left(\frac{1}{2}\right)\theta\right) \cos \phi \tag{94}$$ Using this restriction on a in the expression $$\cos \gamma = \cos a \cos \theta + \sin a \sin \theta \cos \phi$$ or $$\cos \gamma = \cos a \left(2 \cos^2 \frac{\theta}{2} - 1 \right) + \sin a \left(2 \sin \frac{\theta}{2} \cos \frac{\theta}{2} \right) \cos \phi \tag{95}$$ where γ is the angle between the cylinder axis and the scattering direction, gives the basic result that the scattered light is confined to the surface of a cone of apical angle 2a i.e., $\gamma = a$. Theoretically, one can show the formation of the scattering cone of the infinite cylinder by varying the length of a finite cylinder. Figure 9 shows the normalized scattering differential cross section $$\frac{\frac{d\sigma(\theta)}{d\Omega}}{\frac{d\sigma(\theta=0)}{d\Omega}} = E^2 \left(k\ell \sin \frac{\theta}{2} \cos \beta \right) \cdot F^2 \left(2 ka \sin \frac{\theta}{2} \sin \beta \right)$$ (96) Figure 9. The effect of varying the length ℓ of a finite cylinder of radius $a = 0.03 \,\mu\text{m}$ and refractive index m = 1.33 $(-\ell = 0.1 \,\mu\text{m}, ---\ell = 1 \,\mu\text{m}, -\ell = 10 \,\mu\text{m})$. versus the scattering angle for the particular case where the scattered beams lie in the plane defined by the incident beam and the axis of the cylinder (Fig. 10). The cylinder of radius $a=0.3~\mu m$ has a tilt angle of 60 deg; hence, the scattered beams with scattering angles of 60 deg and -120 deg coincide with the axis of the cylinder. For a length $\ell=0.1~\mu m$ ($\ell/a \simeq 3$), the peak due to the scattering cone has not appeared. A wide scattering cone peak is seen for the case $\ell=1~\mu m$ ($\ell/a \simeq 33$) at 0 deg and 120 deg. For $\ell=10~\mu m$ ($\ell/a \simeq 333$), the scattering pattern approaches that of an infinite cylinder with a scattering cone having an apical angle of 120 deg. The value of the normalized scattering differential cross section at $\ell=120$ deg is nonzero, and not 1 as a result of a finite radius, i.e., $$\frac{1}{2} F^2 \left(2 \operatorname{ka sin} \frac{\theta}{2} \right) (1 + \cos^2 \theta) = 0.561$$ The cone can easily be seen with a milliwatt helium-neon laser $(0.6328 \,\mu\text{m})$ and a slender wire [10]. Figure 11 shows the geometry of the experiment and photographs of the scattering pattern. Both the 25.4- μ m-diam copper wire and the 1034- μ m-diam wire shown Figure 10. Cylinder scattering in the plane defined by the cylinder axis and incident beam. have a tilt angle of approximately 60 deg.1 The incident beam is made visible through the use of smoke. The scattering cone cross section is observed on a plane normal to the axis of the cylinder. Note that the incident beam lies on the cone in the forward scattering direction. The thick wire is visible because of the light scattered by the smoke. The black patch seen in the photograph of the thin wire was used to reduce the amount of diffuse light coming from the screen. Cooke and Kerker [9] explain that the irregularities of the diffuse circles for the thick wire are caused by contamination on the wire, e.g., dust. The fine concentric circles which appear in the thin wire case are probably caused by irregularities on the surface of the wire. ^{1.} Although Rayleigh-Gans theory is not applicable, the scattering geometry is equivalent to the Rayleigh-Gans case. a С Figure 11. a. The experiment geometry. b. Scattering from thick wire. - c. Scattering from thin wire. # **APPENDIX** #### **COMPUTER
PROGRAM** A listing of a computer program to calculate I_1 and I_2 for Rayleigh-Gans scattering for a cylinder and a disk is presented, followed by a sample output. The input/output information is given on the comment cards at the beginning of the program. A flow chart is presented in Figure A-1. For reference: $$I_1 = k^6 V^2 \left(\frac{m-1}{2\pi}\right)^2 R^2 (\theta, \phi)$$ (A-1) $$I_2 = I_1 \cos^2 \theta \tag{A-2}$$ $$I = \frac{(I_1 + I_2)}{2} \tag{A-3}$$ $$P = \frac{I_1 - I_2}{I_1 - I_2}$$ (A-4) and $$\frac{d\sigma}{d\Omega} = \frac{I_1 + I_2}{2 k^2} \tag{A-5}$$ ``` DRUN.P CYLIND. 400980. GAGARYHST561.3.90 aFOR ISF MAIN C . THIS PROGRAM COMPUTES II AND IZ FOR RAYLEIGH-GAN SCATTERING C C SPHERE G=(3(SINU-UCOSU)/U3) C DISK F=2BESS1U/U C ROD E=SINU/U C CYLINDER E*F ELLIPSOIDS--USE G(U) WITH THE RADIUS REPLACED BY OC С C (SEE VAN DE HULST PAGE 93) С INPUT ************ Ċ NI=NUMBER OF RUNS C INDEX1=1=5PHERE C =2=CYLINDER(DISK OR ROD AS LIMITS) INDEX2=1= NO INTEGRATION OF BETA C =2=INTEGRATION OVER ORIENTATION C C FM =REFRACTIVE INDEX (REAL) С A = RADIUS (MICRONS) WAVE =WAVELENGTH (MICRONS) C С FL=LENGTH OF CYLINDER BETA=ANGLE BETWEEN CYLINDER AXIS AND THE C C BISECTRIX (OF SCAT DIRECT AND THE AXIS OF CYLINDER) C GUTPUT*********** C ALP TALPHA XI1 = I1 C C X13 =15 С P =POLARIZATION THETA =SCATTERING ANGLE (0-180 DEG. STEP=5) 14 FORMAT(31H ***RAYLEIGH-GANS SCATTERING****//) 5 FORMAT(18H REFRACTIVE INDEX=+F7.3+/) 6 FORMAT(17H PARTICLE-RADIUS=+F7.3+8H LENGTH=+F7.3+/) 7 FORMAT(12H WAVELENGTH=,F7.3./) 8 FORMAT (7H ALPHA=+F7.3+/) 9 FORMAT(1H0+11H SCAT ANGLE+7X+20H INTENSITY FUNCTIONS+19X+ 123H DEGREE OF POLARIZATION, //.11H THETA (DEG).7X.3H I1.12X.3H I2. 26X+8H I1+T2/2+13X+2H P+/1 1B FORMAT(1H1) 11 FORMAT(1H +15+4X+3F15.6+4X+F9.6) 20 FORMAT(8H INDEXI=+13+22H 1=SPHERE 2=CYLINDER) 21 FORMAT(84 INDEX2=.13.9H 1=BETA.F5.2.25H 2=INTEGRATION OVER BETA) 1 FORMAT(13) 22 FORMAT(213,2F10.5) READ(5.1)NI NN = 1 PI=3.1415927 PI2=2.*PI 2 CONTINUE RE AD (5,22) INDEX1, INDEX2, BETA, FL BETA=BETA*PI/18C. READ(5.3)FY. A.WAVE 3 FORMAT(3F10.3) FK=PI2/WAVE GO TO (23.24) . INDEX1 23 VOL=(4.*PT*A**3)/3. GO TO 25 24 VOL=(PI * A * * 2) * FL 25 CONTINUE A3=1./3. C ALP FOR CYLINDER IS CALCULATED FOR EQUIVALENT SPHERE ``` ``` ALP=PI2*(3.*VOL/(4.*PI))**A3/WAVE CHI=(FK**6*VOL**2)*((FM-1.)/(2.*PI))**2 WRITE(6:10) WRITE (6, 14) WRITE(6.5)FM WRITE (6.6) A. FL WRITE(6.7)WAVE WRITE (6+8) ALP WRITE(6.20) INDEX1 GO TO (26,27), INDEX1 27 WRITE(6.21) INDEX2.BETA 26 CONTINUE WRITE(6.9) THETAT.0 DO 4 I=1.37 Z1 = 2. *F K * A * ST N(THET A / 2.) U1=Z1*SIN(BETA) Z2=FK*FL*SIN(THETA/2.) U2=Z2+COS (RETA) U=2.*ALP*STN(THETA/2.) GO TO (28.29) . INDEX1 28 ETA=(S(U))**2 60 TO 30 29 GO TO (31.32).INDEX2 31 ETA=(F(U1)*E(U2))**2 GO TO 30 32 CALL RBAR2(Z1.Z2.ETA) 30 CONTINUE ZETA=(COS(THETA))**2 XI1=CHI * ET A XI2=XI1*ZETA XI12=(XI1+XI2)/2. P=(XI1-XI2)/(XI1+XI2) NTH=5 *1-5 WRITE(6.11)NTH.XII.XI2.XI12.P THETA=THETA+5.*PI/180. 4 CONTINUE NN=NN+1 IF (NN-NI)2+2+13 13 CONTINUE STOP FUNCTION G(U) EPS=.000001 IF (ABS(U)-EPS) 302, 302, 301 302 G=1. GO TO 303 301 G=(SIN(U)-U*COS(U))/(U**3) 6=6*3. 303 CONTINUE RETURN. FUNCTION E(U) EPS=.000001 IF (ABS(U)-EPS)312.312.311 312 E=1. GO TO 313 ``` ``` 311 E=SIN(U)/U 313 RETURN FUNCTION F(U) EPS=.000001 IF (ABS(U)-EPS)322+322+321 322 F=1. GO TO 323 321 F=855L(U+1) F=F * 2 . /U 323 RETURN FUNCTION BSSL(X+N) 0=.000001 BJ=0. IF (N) 10 . 20 . 20 10 IER=1 RETURN 20 IF(X)30,30,31 30 IFR=2 RETURN 31 IF (X-15.)32, 32, 34 32 NTEST=20.+10.*X-X**2/3. GO TO 36 34 NTEST=90.+X/2. 36 IF (N-NTEST) 40.38.38 38 IER=4 RETURN 40 IER=0 N1 = N+1 SPRE V= . 0 IF (X-5.)50.60.60 50 MA= X+6. GO TO 70 60 MA=1.4*X+60./X 70 MB=N+IFIX(X)/4+2 MZERO=MAXD(MA.MB) MM AX=NTEST 100 00 130 M=MZERO . MMAX . 3 FM1=1.0E-28 FM= . C ALPHA=.0 IF (M-(M/2) +2) 120 +110 +120 110 JT=-1 60 TO 130 120 JT=1 130 M2=M-2 00 160 K=1.M2 MK=M-K BMK=2.*FLOAT(MK)*FM1/X-FM FM=FM1 FM1=BMK IF (MK-N-1)150+140+150 140 BJ=8MK 150 JT=-JT S=1+JT 160 ALPHA=ALPHA+BMK*S ``` ``` BMK=2.*FM1/X-FM IF (N)180-170-180 170 BJ=BMK 180 ALPHA=ALPHA+BMK BJ=BJ/ALPHA BSSL=BJ IF (ABS(BJ-BPREV)-ABS(D*BJ))200,200,190 190 BPREV=BJ IER=3 200 RETURN END aFOR. IS RBARZ SUBROUTINE RBAR2(Z1.Z2.ETA) INTEGRATES OVER ORIENATION OF THE CYLINDERS С DIMENSION Y(16) A(16) CALL INT16 (Y A) ETA = . O DO 1 I=1.16 F1=(Y(I)) U1=Z1 *S9RT(1.-F1*F1) U2=Z2*F1 ET=(F(U1)*E(U2))**2 ETA=ET*A(I)+ETA 1 CONTINUE RETURN FUNCTION G(U) EPS= .000001 IF (ABS(U)-EPS) 302.302.301 302 6=1. GO TO 303 301 G=(SIN(U)-U*COS(U))/(U**3) G=G*3. 303 CONTINUE RETURN FUNCTION E(U) E°S=.000001 IF (ABS(U)-EPS)312+312+311 312 E=1. 60 TO 313 311 E=SIN(U)/U 313 RETURN FUNCTION F(U) EPS=.000001 IF (ABS(U)-EPS) 322+322+321 322 F=1. GO TO 323 321 F=BSSL(U+1) F=F*2./U 323 CONTINUE RETURN FUNCTION BSSL(X:N) n=.000001 BJ=0. IF (N) 10 - 20 - 20 10 IER=1 ``` ``` RETURN 20 IF(X) 30 - 30 - 31 30 IER=2 RETURN 31 IF(X-15.)32 U2.34 32 NTES =20.+10.*X-X**2/3. GO T 36 34 NTES1 =90 .+ X/2. 36 IF (N-::TEST) 40,38,38 38 IER=4 RETURN 40 IER=0 N1=N+1 BPREV=.0 IF(X-5.)50.60.60 50 MA=X+6. 60 TO 70 60 MA=1.4*X+60./X 70 MB=N+IFIX(X)/4+2 MZERO-MAXO(MA+MB) MMA X=NTEST 100 DO 190 M=MZERO, MMAX, 3 FM1=1.0E-28 FM=.0 ALPHA=.0 IF (M-(M/2)+2)120+110+120 110 JT=-1 GO TO 130 120 JT=1 130 M2=M-2 DO 160 K=1.M2 MK=M-K BMK=2.*FLOAT(MK)*FM1/X-FM FM=FM1 FM1=BMK IF (MK-N-1)150+140+150 140 BJ=BMK 150 JT=-JT S=1+JT 150 ALPHA=ALPHA+BMK*S BMK=2.*FM1/X-FM IF (N)180-170-180 170 BJ=BMK 180 ALPHA=ALPHA+BMK BJ=BJ/ALPHA BSSL=3J IF (ABS(BJ-BPREV)-ABS(D*BJ))200,200,190 190 BPREV=BJ IER=3 200 RETURN END DFOR. IS INT16 SUBROUTINE INTIG(Y+A) DIMENSION Y(16) A(16) 16 POINT GAUSSIAN SUBROUTINE ``` C ``` Y AND A MUST BE DIMENSION IN CALLING PROGAM С Y(1) = .95012510E-01 Y(2) = 0.28160355 Y(3) = 0.45801678 Y(4) = 0.61787624 Y(5) = 0.75540441 Y(6) = 0.86563120 Y(7) = 0.94457502 Y(8)= 0.98940093 A(1) = 0.18945061 A(2) = 0.18260341 A(3) = 0.16915652 A(4) = 0.14959599 A(5)= 0.12462897 A(6) = .95158512E - 01 A(7) = .62253524E-01 A(8) = .27152459E - 01 DO 8 I=9.16 II=17-I Y(I) = -Y(II) 8 A(I)=A(II) RETURN END axor ``` REFRACTIVE INDEX= 1.300 PARTICLE-RADIUS= .100 LENGTH=100.000 WAVELENGTH= .500 ALPHA= 11.417 INDEX1= 2 1=SPHERE 2=CYLINDER | INDEX1: 2 1=SPHERE 2=CYLINDER INDEX2: 1 1=BETA: 1.57 2=INTEGRATION OVER BETA | | | | | | | | | | |---|------------------------|--------------|--------------|----------|--|--|--|--|--| | SCAT ANGLE | DEGREE OF POLARIZATION | | | | | | | | | | THETA(DEG) | . 11 | Ĭ2 | I1+I2/2 | Р | | | | | | | 0 | 88601-623047 | 88601.623047 | 88601.623047 | .000000 | | | | | | | 5 | 88335.746094 | 87664.736328 | 88000.241211 | .003813 | | | | | | | 10 | 87544-115234 | 84904.336914 | 86224,225586 | .015308 | | | | | | | 1.5 | 86244.449219 | 80467.165039 | 83355.806641 | .034654 | | | | | | | 20 | 84465-475586 | 74584.890625 | 79525.182617 | .062122 | | | | | | | 25 | 82245.773437 | 67556.167969 | 74900.970703 | .098060 | | | | | | | 30 | 79632.217773 | 59724.162598 | 69678.189453 | .142857 | | | | | | | 35 | 76678.210937 | 51451.852051 | 64065.031250 | .196881 | | | | | | | 40 | 73441.691406 | 43097.353516 | 58269.522461 | _260379 | | | | | | | 45 | 69983.120117 | 34991.560547 | 52487.340332 | .333333 | | | | | | | 50 | 66363.496094 | 27419.798584 | 46891,646973 | .415252 | | | | | | | 55 | 62642.520996 | 20608.758789 | 41625.639648 | •504902 | | | | | | | 60 | 58876.954590 | 14719,239868 | 36798.097168 | •600000 | | | | | | | 65 | 55119.285645 | 9844.547095 | 32481.966309 | .696920 | | | | | | | 70 | 51416.681641 | 6014.610291 | 28715.645752 | .790546 | | | | | | | 75 | 47810.275391 | 3202.682007 | 25506.478516 | .874437 | | | | | | | 08 | 44334.748047 | 1336.856812 | 22835.802246 | .941458 | | | | | | | 85 | 41018.243164 | 311.579933 | 20664.911377 | •984922 | | | | | | | 90 | 37882.488770 | .000000 | 18941.244385 | 1.000000 | | | | | | | 95 | 34943.179687 | 265.432404 | 17604.305908 | .984922 | | | | | | | 100 | 32210.480225 | 971.264244 | 16590.872070 | .941458 | | | | | | | 105 | 29689.675781 | 1988.830307 | 15839.252930 | .874437 | | | | | | | 110 | 27381.871826 | 3203.069519 | 15292,470581 | .790546 | | | | | | | 115 | 25284.722656 | 4516.006653 | 14900.364624 | .696920 | | | | | | | 120 | 23393.163086 | 5848.288818 | 14620.725952 | .600000 | | | | | | | 125 | 21700.095459 | 7139.110352 | 14419.602905 | .504902 | | | | | | | 130 | 20197.029053 | 8344.923218 | 14270.976074 | .415252 | | | | | | | 135 | 18874.645996 | 9437.319946 | 14155.982910 | .333333 | | | | | | | 140 | 17723.308105 | 10400.461060 | 14061.884521 | .260379 | | | | | | | 145 | 16733.472900 | 11228.325806 | 13980.899292 | .196881 | | | | | | | 150 | 15896.047119 | 11922,032349 | 13909.039673 | .142857 | | | | | | | 155 | 15202.678955 | 12487.383545 | 13845.031250 | .098060 | | | | | | | 160 | 14645.975708 | 12932.719727 | 13789.347656 | .062122 | | | | | | | 165 | 14219.686890 | 13267.146606 | 13743.416748 | .034654 | | | | | | | 170 | 13918.827026 | 13499.121460 | 13708.974243 | .015308 | | | | | | | 175 | 13739.775757 | 13635.405762 | 13687.590698 | .003813 | | | | | | | 180 | 13680.336426 | 13680.336426 | 1368D.336426 | .000000 | | | | | | Figure A-1. Flow chart for Rayleigh-Gans scattering program. #### **REFERENCES** - 1. Born, M.; and Wolf, E.: Principles of Optics. Pergamon Press, New York, 1965, Chapter I. - 2. Jackson, J. D.: Classical Electrodynamics. John Wiley and Sons, Inc., New York, 1962, Chapters 6, 7, and 9. - 3. Bowman, J. J.; Senior, T. B. A.; and Uslenghi, P. L. E., ed.: Electromagnetic and Acoustic Scattering by Simple Shapes. North Holland Publishing Co., Amsterdam, 1969; also, AF-19(604)-6655 and AF-19(628)-4328. - 4. Kerker, M.: The Scattering of Light and Other Electromagnetic Radiation. Academic Press, New York, 1969, Chapter 2. - 5. Landau, L. D.; and Lifshitz, E. M.: The Classical Theory of Fields. Addison-Wesley Publishing Co., Inc., Reading, Mass., 1962. - 6. Lind, A. C.: Resonance Electromagnetic Scattering by Finite Circular Cylinders.
Ph.D. Dissertation, Renssellaer Polytechnic Institute, 1966. - 7. Van De Hulst, H. C.: Light Scattering by Small Particles. John Wiley and Sons, Inc., New York, 1957, Chapters 6 and 7. - 8. Chu, Chiao-Min: Scattering and Absorption of Water Droplets at Millimeter Wavelengths. Ph.D. Dissertation, University of Michigan, 1952. - 9. Cooke, D. D., and Kerker, M.: Light Scattering from Long Thin Glass Cylinders at Oblique Incidence. J. Opt. Soc. Am., vol. 59, 1969, pp. 43-59. - 10. Gary, G. A., and Craven, P. D.: A Note on the Scattering Geometry from Infinite Cylinders. Appl. Opt., December, 1970. ## **ELECTROMAGNETIC SCATTERING BY CYLINDERS — AN INTRODUCTION** By G. A. Gary and P. D. Craven The information in this report has been reviewed for security classification. Review of any information concerning Department of Defense or Atomic Energy Commission programs has been made by the MSFC Security Classification Officer. This report, in its entirety, has been determined to be unclassified. This document has also been reviewed and approved for technical accuracy. WILLIAM C. SNODDY Chief, Space Thermophysics Division GERHARD B. HELLER Director, Space Sciences Laboratory ## INTERNAL DIR Dr. E. Rees DEP-T Mr. Cook AD-S Dr. E. Stuhlinger S&E-SSL-DIR Mr. G. Heller Mr. R. Hembree S&E-SSL-X Dr. J. Dozier S&E-SSL-P Dr. R. Naumann S&E-SSL-S Dr. W. Sieber S&E-SSL-NA Dr. P. Eby S&E-SSL-T Mr. W. Snoddy S&E-SSL-TE Mr. E. Miller S&E-SSL-TR Mr. G. Arnett S&E-SSL-TT Mr. B. Jones Dr. A. Gary (15) Mr. P. Craven (15) Dr. M. Hagyard S&E-SSL-C Reserve (15) A&TS-PAT Mr. Wofford PM-PR-M A&TS-MS-H A&TS-MS-IP(2) A&TS-MS-IL (8) A&TS-TU (6) **EXTERNAL** Mr. V. Van Doren Department of Physics University of Georgia Athens, Georgia 30601 Dr. W. Abbe Department of Physics University of Georgia Athens, Georgia 30601 Mr. J. Morris Department of Physics University of Virginia Charlottesville, Virginia Dr. J. Weinberg **Dudley Observatory** 100 Fuller Road Albany, New York 12205 Scientific and Technical Information Facility (25) P.O. Box 33 College Park, Maryland 20740 Attn: NASA Representative (S-AK/RKT)